"n=\\frac{6\\,kg}{0.029\\,kg\/mol}=206.897\\,mol\\,of\\,air\n\\\\ \\text{ }\n\\\\ T_1=42\\,\u00b0C=315\\,K\n\\\\ V_1=\\frac{nRT_1}{P_1}\n\\\\ V_1=\\cfrac{(206.897\\,mol)(8.314\\frac{kPaL}{mol\\,K})(315\\,K)}{100\\,kPa}\n\\\\ V_1=5418.446\\,L"
First, since V1=V2 (for the constant volume process):
"T_2=T_1\\frac{P_2}{P_1}=(315\\,K)(\\frac{150\\,kPa}{100\\,kPa})=472.5\\,K"
Then, we know that for an isochoric process "W=\\intop pdV=0", this implies that the first law of thermodynamics is now "\\Delta U = Q-W=Q=nC_v(T_2-T_1)" and for the enthalpy change "\\Delta H = nC_p(T_2-T_1)".
"W=0\\,J\n\\\\ \\Delta U =Q=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(472.5-315)K\n\\\\ \\Delta U =Q= 677305.778\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(472.5-315)K\n\\\\ \\Delta H= 677305.778\\,J"
The second part is an isobaric process, where
"P_2=P_3=150\\,kPa\n\\\\ T_2=472.5\\,K; T_3=600\\,K\n\\\\ V_2=5418.446\\,L\n\\\\ V_3=V_2\\frac{T_3}{T_2}=(5418.446\\,L)(\\frac{600\\,K}{472.5\\,K})\n\\\\ V_3=6880.566\\,L"
Now we can find the rest of the terms knowing the same equations as before for "\\Delta U" and "\\Delta H":
"W=P_2(V_3-V_2)\n\\\\ W=(150\\,kPa)(6880.566-5418.446)L=219318\\,J\n\\\\ \\Delta U =(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-472.5)K\n\\\\ \\Delta U =548295.153\\,J\n\\\\ Q=\\Delta U + W = 767613.153\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-472.5)K\n\\\\ \\Delta H= 548295.153\\,J"
The conclusion for the first part is
"W=(0+219318)\\,J=219318\\,J=219.318\\,kJ\n\\\\ Q=(677305.778+767613.153)\\,J=1444918.931\\,J=1444.918\\,kJ\n\\\\ \\Delta U=(677305.778+548295.153)\\,J=1225600.931 \\,J=1225.601\\,kJ\n\\\\ \\Delta H=(677305.778+548295.153)\\,J=1225600.931 \\,J=1225.601\\,kJ"
First, we know that
"n=\\frac{6\\,kg}{0.029\\,kg\/mol}=206.897\\,mol\\,of\\,air\n\\\\ \\text{ }\n\\\\ T_1=42\\,\u00b0C=315\\,K\n\\\\ V_1=\\frac{nRT_1}{P_1}\n\\\\ V_1=\\cfrac{(206.897\\,mol)(8.314\\frac{kPaL}{mol\\,K})(315\\,K)}{100\\,kPa}\n\\\\ V_1=5418.446\\,L"
First, since P1=P2 (for the constant pressure process):
"V_2=V_1\\frac{T_2}{T_1}=(5418.446\\,L)(\\frac{600\\,K}{315\\,K})=10320.849\\,L"
Now, we know that for this process we can calculate the following:
"W=P_1(V_2-V_1)=(100\\,kPa)(10320.849-5418.446)L=490240.3\\,J\n\\\\ \\Delta U =(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-315)K\n\\\\ \\Delta U =1225600.931\\,J\n\\\\ Q=\\Delta U + W = 1775841.231\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-315)K\n\\\\ \\Delta H= 1225600.931\\,J"
Now, the second part of this other process involves a process at constant volume, where
"V_2=V_3=10320.849\\,L\n\\\\ T_2=T_1\\frac{P_2}{P_1}=(600\\,K)(\\frac{150\\,kPa}{100\\,kPa})=900\\,K"
Then, since the volume is constant no work is done thus
"W=0\\,J\n\\\\ \\Delta U =Q=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(900-600)K\n\\\\ \\Delta U =Q= 1290106.244\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(900-600)K\n\\\\ \\Delta H= 1290106.244\\,J"
For the second part, we have the following
"W=(490240.3+0)\\,J=490240.3\\,J=490.240\\,kJ\n\\\\ Q=(1775841.231+1290106.244)\\,J=3065947.475\\,J=3065.947\\,kJ\n\\\\ \\Delta U=(1225600.931+1290106.244)\\,J=2515707.175\\,J=2515.707\\,kJ\n\\\\ \\Delta H=(1225600.931+1290106.244)\\,J=2515707.175\\,J=2515.707\\,kJ"
Comments
Leave a comment