Answer to Question #244319 in Molecular Physics | Thermodynamics for Zyy

Question #244319
Heat is transferred to 6 kg of air which is initially at 100 kPa and B
0C until its temperature reaches 600
K and pressure reaches at 150 kPa. Determine the change in internal energy, the change in enthalpy,
the heat supplied and the work done in the following processes:
1. Constant Volume Process followed by Constant PressureProcess
2. Constant Pressure process followed by Constant VolumeProcess
Assume that air is an ideal gas. R=8.314 KJ/Kmol K, Cp=20.785 KJ/Kmol K and Cv =20.785
KJ/Kmol KMolecular weight of air =29. B = 42
1
Expert's answer
2021-09-30T10:20:35-0400



1. Constant Volume Process followed by Constant Pressure Process: At first, we have:

"n=\\frac{6\\,kg}{0.029\\,kg\/mol}=206.897\\,mol\\,of\\,air\n\\\\ \\text{ }\n\\\\ T_1=42\\,\u00b0C=315\\,K\n\\\\ V_1=\\frac{nRT_1}{P_1}\n\\\\ V_1=\\cfrac{(206.897\\,mol)(8.314\\frac{kPaL}{mol\\,K})(315\\,K)}{100\\,kPa}\n\\\\ V_1=5418.446\\,L"


First, since V1=V2 (for the constant volume process):


"T_2=T_1\\frac{P_2}{P_1}=(315\\,K)(\\frac{150\\,kPa}{100\\,kPa})=472.5\\,K"


Then, we know that for an isochoric process "W=\\intop pdV=0", this implies that the first law of thermodynamics is now "\\Delta U = Q-W=Q=nC_v(T_2-T_1)" and for the enthalpy change "\\Delta H = nC_p(T_2-T_1)".


"W=0\\,J\n\\\\ \\Delta U =Q=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(472.5-315)K\n\\\\ \\Delta U =Q= 677305.778\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(472.5-315)K\n\\\\ \\Delta H= 677305.778\\,J"


The second part is an isobaric process, where


"P_2=P_3=150\\,kPa\n\\\\ T_2=472.5\\,K; T_3=600\\,K\n\\\\ V_2=5418.446\\,L\n\\\\ V_3=V_2\\frac{T_3}{T_2}=(5418.446\\,L)(\\frac{600\\,K}{472.5\\,K})\n\\\\ V_3=6880.566\\,L"


Now we can find the rest of the terms knowing the same equations as before for "\\Delta U" and "\\Delta H":


"W=P_2(V_3-V_2)\n\\\\ W=(150\\,kPa)(6880.566-5418.446)L=219318\\,J\n\\\\ \\Delta U =(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-472.5)K\n\\\\ \\Delta U =548295.153\\,J\n\\\\ Q=\\Delta U + W = 767613.153\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-472.5)K\n\\\\ \\Delta H= 548295.153\\,J"


The conclusion for the first part is


"W=(0+219318)\\,J=219318\\,J=219.318\\,kJ\n\\\\ Q=(677305.778+767613.153)\\,J=1444918.931\\,J=1444.918\\,kJ\n\\\\ \\Delta U=(677305.778+548295.153)\\,J=1225600.931 \\,J=1225.601\\,kJ\n\\\\ \\Delta H=(677305.778+548295.153)\\,J=1225600.931 \\,J=1225.601\\,kJ"


2. Constant Pressure process followed by Constant Volume Process


First, we know that


"n=\\frac{6\\,kg}{0.029\\,kg\/mol}=206.897\\,mol\\,of\\,air\n\\\\ \\text{ }\n\\\\ T_1=42\\,\u00b0C=315\\,K\n\\\\ V_1=\\frac{nRT_1}{P_1}\n\\\\ V_1=\\cfrac{(206.897\\,mol)(8.314\\frac{kPaL}{mol\\,K})(315\\,K)}{100\\,kPa}\n\\\\ V_1=5418.446\\,L"


First, since P1=P2 (for the constant pressure process):


"V_2=V_1\\frac{T_2}{T_1}=(5418.446\\,L)(\\frac{600\\,K}{315\\,K})=10320.849\\,L"


Now, we know that for this process we can calculate the following:


"W=P_1(V_2-V_1)=(100\\,kPa)(10320.849-5418.446)L=490240.3\\,J\n\\\\ \\Delta U =(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-315)K\n\\\\ \\Delta U =1225600.931\\,J\n\\\\ Q=\\Delta U + W = 1775841.231\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(600-315)K\n\\\\ \\Delta H= 1225600.931\\,J"

Now, the second part of this other process involves a process at constant volume, where


"V_2=V_3=10320.849\\,L\n\\\\ T_2=T_1\\frac{P_2}{P_1}=(600\\,K)(\\frac{150\\,kPa}{100\\,kPa})=900\\,K"


Then, since the volume is constant no work is done thus


"W=0\\,J\n\\\\ \\Delta U =Q=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(900-600)K\n\\\\ \\Delta U =Q= 1290106.244\\,J\n\\\\ \\Delta H=(206.897\\,mol)(20.785\\frac{J}{mol\\,K})(900-600)K\n\\\\ \\Delta H= 1290106.244\\,J"


For the second part, we have the following


"W=(490240.3+0)\\,J=490240.3\\,J=490.240\\,kJ\n\\\\ Q=(1775841.231+1290106.244)\\,J=3065947.475\\,J=3065.947\\,kJ\n\\\\ \\Delta U=(1225600.931+1290106.244)\\,J=2515707.175\\,J=2515.707\\,kJ\n\\\\ \\Delta H=(1225600.931+1290106.244)\\,J=2515707.175\\,J=2515.707\\,kJ"



Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS