First, we have to calculate the force along the displacement:
We proceed to find the following equations:
FAB=103xFBC=12−103xFCD=12−103xFDE=103x−18
With this information we can find the work done:
WAC=∫ACFdx=∫AB[FAB]dx+∫BC[FBC]dx WAC=∫020[3x/10]dx+∫2040[12−3x/10]dx WAC=[3x2/20]020+[12x−3x2/20]2040 WAC=[3(20)2/20−0]+[12(40−20)−(3/20)(402−202)]J WAC=[3(20)+12(20)−(3)(60)]J=(60+240−180)J=120J
For the second part:
WCE=∫CEFdx=∫CD[FCD]dx+∫DE[FDE]dx WCE=∫4050[12−3x/10]dx+∫5060[−18+3x/10]dx WCE=[12x−3x2/20]4050+[−18x+3x2/20]5060 WCE=([12(50−40)−(3/20)(502−402)]+[−18(60−50)+(3/20)(602−502)])J WCE=(12(10)−(3/2)(90)−18(10)+(3/2)(110))J=(120−135−180+165)JWCE=−30J
The total work for the whole process will be the sum:
WT=WAC+WCE=(120−30)J=90J
- Sears, F. W., & Zemansky, M. W. (1973). University physics.
Comments