Question #240855

The force acting on a particle varies as in the figure below. (The x-axis is marked in increments of 5.00 m.)A coordinate plane has a horizontal axis labeled x (m) and a vertical axis labeled Fx (N). There are five points, connected by straight lines in order from A to E.

  • Point A is at (0,0). Point B is at (20,6). Point C is at (40,0). Point D is at (50,−3). Point E is at (60,0).



Find the work done by the force as the particle moves across the following distances.

(a) from x = 0 m

 to x = 40.0 m


__ J


(b) from x = 40.0 m

 to x = 60.0 m


__ J


(c) from x = 0 m

 to x = 60.0 m


 __J



1
Expert's answer
2021-09-23T08:31:13-0400

First, we have to calculate the force along the displacement:





We proceed to find the following equations:

FAB=3x10FBC=123x10FCD=123x10FDE=3x1018F_{AB}=\frac{3x}{10} \\ F_{BC}=12-\frac{3x}{10} \\ F_{CD}=12-\frac{3x}{10} \\ F_{DE}=\frac{3x}{10}-18


With this information we can find the work done:


WAC=ACFdx=AB[FAB]dx+BC[FBC]dx WAC=020[3x/10]dx+2040[123x/10]dx WAC=[3x2/20]020+[12x3x2/20]2040 WAC=[3(20)2/200]+[12(4020)(3/20)(402202)]J WAC=[3(20)+12(20)(3)(60)]J=(60+240180)J=120JW_{AC}=\int^C_A F\,{dx}=\int^B_A[F_{AB}]\,{dx}+\int^C_B[F_{BC}]\,{dx} \\ \text{ } \\W_{AC} =\int^{20}_0[3x/10]\,{dx}+\int^{40}_{20}[12-3x/10]\,{dx} \\ \text{ } \\W_{AC} =[3x^2/20]^{20}_0+[12x-3x^2/20]^{40}_{20} \\ \text{ } \\W_{AC} =[3(20)^2/20-0]+[12(40-20)-(3/20)(40^2-20^2)]J \\ \text{ } \\W_{AC} =[3(20)+12(20)-(3)(60)]J=(60+240-180)J=120\,J


For the second part:


WCE=CEFdx=CD[FCD]dx+DE[FDE]dx WCE=4050[123x/10]dx+5060[18+3x/10]dx WCE=[12x3x2/20]4050+[18x+3x2/20]5060 WCE=([12(5040)(3/20)(502402)]+[18(6050)+(3/20)(602502)])J WCE=(12(10)(3/2)(90)18(10)+(3/2)(110))J=(120135180+165)JWCE=30JW_{CE}=\int^E_C F\,{dx}=\int^D_C[F_{CD}]\,{dx}+\int^E_D[F_{DE}]\,{dx} \\ \text{ } \\W_{CE} =\int^{50}_{40}[12-3x/10]\,{dx}+\int^{60}_{50}[-18+3x/10]\,{dx} \\ \text{ } \\W_{CE} =[12x-3x^2/20]^{50}_{40}+[-18x+3x^2/20]^{60}_{50} \\ \text{ } \\W_{CE} =([12(50-40)-(3/20)(50^2-40^2)]+[-18(60-50)+(3/20)(60^2-50^2)])J \\ \text{ } \\W_{CE} =(12(10)-(3/2)(90)-18(10)+(3/2)(110))J=(120-135-180+165)J \\ W_{CE}=-30\,J


The total work for the whole process will be the sum:


WT=WAC+WCE=(12030)J=90JW_T=W_{AC}+W_{CE}=(120-30)J=90\,J


In conclusion, the work done by the force as the particle moves across the following distances is:
(a) from x = 0 m  to x = 40.0 m W=120 J(b) from x = 40.0 m  to x = 60.0 m W= -30 J(c) from x = 0 m to x = 60.0 m W= 90 J



Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS