A flywheel has a moment of inertia of 4.8 kg-m2 . What constant force is required to increase its
frequency from 3 rev/s to 6 rev/s in 7 revolutions?
Calculations
τ=Iα⋯(1)w12=ω22+2αθ62=32+2α×7α=1.93 rads−2In (1),τ=4.8 kgm2×1.93s−2F×r=9.26F=9.26r\qquad\qquad \begin{aligned} \small \tau &=\small I\alpha \cdots(1)\\ \\ \small w^2_1&=\small \omega^2_2+2\alpha \theta\\ \small 6^2&=\small 3^2+2\alpha \times7\\ \small \alpha&=\small 1.93\,rads^{-2}\\ \\ \small \text{In (1),}\\ \\ \small \tau&=\small 4.8\,kgm^2\times1.93s^{-2}\\ \small F\times r&=\small 9.26\\ \small F&=\small \frac{9.26}{r} \end{aligned}τw1262αIn (1),τF×rF=Iα⋯(1)=ω22+2αθ=32+2α×7=1.93rads−2=4.8kgm2×1.93s−2=9.26=r9.26
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment