Answer to Question #304986 in Mechanics | Relativity for Ogar Precious Owog

Question #304986

Two objects of equal masses collide head-on while moving in the opposite direction and joined together. Show that the fractional loss of original kinetic energy of the objects is given by the expression; E=1/2+V1V2/V1²+V2²

1
Expert's answer
2022-03-07T11:45:17-0500

Explanations & Calculations


  • Final speed needs to be found using the conservation of linear momentum.

mv1mv2=2mVV=v1v22\qquad\qquad \begin{aligned} \small \to\\ \small mv_1-mv_2&=\small 2mV\\ \small V&=\small \frac{v_1-v_2}{2} \end{aligned}

  • Then the energy loss is

L=K.EinitalΔL=K.EinitalK.Efinal=12mv12+12mv212.2m.V2=m2[v122+v222+v1v2]\qquad\qquad \begin{aligned} \small L&=\small K.E_{inital}\\ \small \Delta L&=\small K.E_{inital}-K.E_{final}\\ &=\small \frac{1}{2}mv_1^2+\frac{1}{2}mv_2-\frac{1}{2}.2m.V^2\\ &=\small \frac{m}{2}\Big[\frac{v_1^2}{2}+\frac{v_2^2}{2}+v_1v_2\Big]\\ \end{aligned}

  • Then the fractional loss is

ΔLL=v122+v222+v1v2v12+v22=(v12+v22)2+v1v2(v12+v22)=12+v1v2(v12+v22)\qquad\qquad \begin{aligned} \small \frac{\Delta L}{L}&=\small \frac{\frac{v_1^2}{2}+\frac{v_2^2}{2}+v_1v_2}{v_1^2+v_2^2}\\ &=\small \frac{\frac{(v_1^2+v_2^2)}{2}+v_1v_2}{(v_1^2+v_2^2)}\\ &=\small \frac{1}{2}+\frac{v_1v_2}{(v_1^2+v_2^2)} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment