Using Stoke’s Theorem evaluate the line integral ∫ ↓c F. dl where C is the ellipse
x²/4 +y²/16 = 1 in the xy - plane and F vector = 2x²i^ +4xj^ +2z²k^.
F=2x2i^+4xj^+2z2k^F=2x^2\hat{i}+4x\hat{j}+2z^2\hat{k}F=2x2i^+4xj^+2z2k^
dr=dxi^+dyjdr=dx\hat{i}+dy{j}dr=dxi^+dyj
Now stock theorem
∫F.dr=2x33+4xy\smallint F.dr= \frac{2x^3}{3}+4xy∫F.dr=32x3+4xy
At point
P(2,4)
∫F.dr=2×233+4×2×4\smallint F.dr=\frac{2\times2^3}{3}+4\times2\times4∫F.dr=32×23+4×2×4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments