Question #302212

Using Stoke’s Theorem evaluate the line integral ∫ ↓c F. dl where C is the ellipse


x²/4 +y²/16 = 1 in the xy - plane and F vector = 2x²i^ +4xj^ +2z²k^.

1
Expert's answer
2022-02-28T13:52:45-0500

F=2x2i^+4xj^+2z2k^F=2x^2\hat{i}+4x\hat{j}+2z^2\hat{k}

dr=dxi^+dyjdr=dx\hat{i}+dy{j}

Now stock theorem


F.dr=(2x2i^+4xj^+2z2k^).(dxi^+dyj)=2x33+4xy\smallint F.dr=\smallint (2x^2\hat{i}+4x\hat{j}+2z^2\hat{k}).(dx\hat{i}+dy{j})=\frac{2x^3}{3}+4xy

F.dr=2x33+4xy\smallint F.dr= \frac{2x^3}{3}+4xy

At point

P(2,4)

F.dr=2×233+4×2×4\smallint F.dr=\frac{2\times2^3}{3}+4\times2\times4


F.dr=163+32=1123=37.33J\smallint F.dr=\frac{16}{3}+32=\frac{112}{3}=37.33J


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS