Using Stoke’s Theorem evaluate the line integral ∫ ↓c F. dl where C is the ellipse
x²/4 +y²/16 = 1 in the xy - plane and F vector = 2x²i^ +4xj^ +2z²k^.
"F=2x^2\\hat{i}+4x\\hat{j}+2z^2\\hat{k}"
"dr=dx\\hat{i}+dy{j}"
Now stock theorem
"\\smallint F.dr= \\frac{2x^3}{3}+4xy"
At point
P(2,4)
"\\smallint F.dr=\\frac{2\\times2^3}{3}+4\\times2\\times4"
Comments
Leave a comment