Given,
Charge density of the charged wire (λ)=∣x∣+α1
⇒dq=λdx
⇒∫dq=∫λdx
Now, let the total length of the wire be l. So, integration limit will be −l to +l
⇒∫q=0q=Qdq=∫−llλdx
Now, taking the integration
Q=∫x=0x=lx−αdx−∫x=0x=lx+αdx
⇒Q=[ln(x−α)]0l−ln(x+α)]0l
⇒Q=ln(x−α)−ln(x+α)
⇒Q=ln(x+α)(x−α)
⇒Q=ln(x(1+xα)x(1−xα))
x→∞
⇒Q=ln1∼0
Hence, net charge on the straight infinite wire be zero.
Comments