What is the total charge on an infinite wire carring a charge density
λ =
1
|x|+α where α is a cosntant.
Given,
Charge density of the charged wire "(\\lambda) = \\frac{1}{|x|+\\alpha}"
"\\Rightarrow dq=\\lambda dx"
"\\Rightarrow \\int dq = \\int \\lambda dx"
Now, let the total length of the wire be l. So, integration limit will be "-l" to "+l"
"\\Rightarrow \\int_{q=0}^{q=Q} dq=\\int_{-l}^{l}\\lambda dx"
Now, taking the integration
"Q=\\int_{x=0}^{x=l} \\frac{dx}{x-\\alpha}-\\int_{x=0}^{x=l} \\frac{dx}{x+\\alpha}"
"\\Rightarrow Q = [\\ln(x-\\alpha)]_{0}^{l}-\\ln{(x+\\alpha)}]_{0}^{l}"
"\\Rightarrow Q = \\ln(x-\\alpha)-ln(x+\\alpha)"
"\\Rightarrow Q = \\ln{\\frac{(x-\\alpha)}{(x+\\alpha)}}"
"\\Rightarrow Q = \\ln(\\frac {x(1-\\frac{\\alpha}{x})}{x(1+\\frac{\\alpha}{x})})"
"x\\rightarrow \\infty"
"\\Rightarrow Q = \\ln 1\\sim 0"
Hence, net charge on the straight infinite wire be zero.
Comments
Leave a comment