Problem 2.12 Use Gauss's law find the electric field inside a uniformly charged sphere (charge density p). Compare your answer to Prob. 2.8.
To find electric field inside a charged solid sphere using Gauss's law.
Consider a charged sphere of radius R and uniform charge density ρ, q is the charge on sphere where "\u03c1=\\frac{q}{V}=\\frac{q}{\\frac{4}{3} \\pi R^3}"
Consider a point P at a distance r inside the sphere.
Now draw a Gaussian surface with radius r<R
Using Gauss’s theorem
"\u03a6 = \\oint \\vec{E}\\cdot \\vec{ds} = \\frac{q_{enclosed}}{\u03b5_0} \\\\\n\nq_{enclosed} = \u03c1V_{enclosed} = (\\frac{4}{3} \\pi R^3)(\\frac{4}{3} \\pi r^3) \\\\\n\nq_{enclosed} = q(\\frac{r^3}{R^3}) \\\\\n\n\\oint \\vec{E}\\cdot \\vec{ds} = \\frac{qr^3}{\u03b5_0R^3} \\\\\n\nE4 \\pi r^2 = \\frac{qr^3}{\u03b5_0R^3} \\\\\n\nE= \\frac{1}{4 \\pi \u03b5_0} \\frac{qr}{R^3}"
In terms of charge density
"E= \\frac{1}{4 \\pi \u03b5_0} \\frac{(\u03c1 \\frac{4}{3} \\pi R^3)r}{R^3} \\\\\n\nE = \\frac{\u03c1r}{3\u03b5_0 }"
Comments
Leave a comment