Answer to Question #238815 in Electricity and Magnetism for GAYATHRI

Question #238815


3. Among the following which can not be an electric field? E~ = c(xyi +2yzj +3xzk), E~ = c(y^2i + (2xy + z^2)j + 2yzk), where c is a constant.

What would be the dimension of c? (Problem 2.20 of Griffiths, 4th

edition)


1
Expert's answer
2021-09-18T14:58:51-0400

Given:

E1=c(xyi^+2yzj^+3xzk^){\bf E}_1 = c(xy{\hat i} +2yz{\hat j} +3xz{\hat k})

E2=c(y2i^+(2xy+z2)j^+2yzk^){\bf E}_2 = c(y^2{\hat i} +(2xy+z^2){\hat j} +2yz{\hat k})


The electrostatic field must satisfy the condition

rotE=0\rm rot\:{\bf E}=\bf 0

Let's check it

rotE1=i^j^k^xyzExEyEz\rm rot\:{\bf E}_1=\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x&E_y&E_z \end{vmatrix}

=ci^j^k^xyzxy2yz3xz=c(2yi^3zj^yz^)0=c\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy&2yz&3xz \end{vmatrix}=c(-2y\hat i-3z\hat j-y\hat z)\neq0

rotE2=ci^j^k^xyzy22xy+z22yz{\rm rot\:{\bf E}_2}=c\begin{vmatrix} \hat i & \hat j &\hat k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2&2xy+z^2&2yz \end{vmatrix}

=c(0i^+0j^+0z^)=0=c(0\hat i+0\hat j+0\hat z)=\bf 0

Answer: E1E_1 can not be an electric field.

The dimention of constant cc is V/m3\rm V/m^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment