Given:
E 1 = c ( x y i ^ + 2 y z j ^ + 3 x z k ^ ) {\bf E}_1 = c(xy{\hat i} +2yz{\hat j} +3xz{\hat k}) E 1 = c ( x y i ^ + 2 yz j ^ + 3 x z k ^ )
E 2 = c ( y 2 i ^ + ( 2 x y + z 2 ) j ^ + 2 y z k ^ ) {\bf E}_2 = c(y^2{\hat i} +(2xy+z^2){\hat j} +2yz{\hat k}) E 2 = c ( y 2 i ^ + ( 2 x y + z 2 ) j ^ + 2 yz k ^ )
The electrostatic field must satisfy the condition
r o t E = 0 \rm rot\:{\bf E}=\bf 0 rot E = 0 Let's check it
r o t E 1 = ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z E x E y E z ∣ \rm rot\:{\bf E}_1=\begin{vmatrix}
\hat i & \hat j &\hat k\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_x&E_y&E_z
\end{vmatrix} rot E 1 = ∣ ∣ i ^ ∂ x ∂ E x j ^ ∂ y ∂ E y k ^ ∂ z ∂ E z ∣ ∣
= c ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z x y 2 y z 3 x z ∣ = c ( − 2 y i ^ − 3 z j ^ − y z ^ ) ≠ 0 =c\begin{vmatrix}
\hat i & \hat j &\hat k\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
xy&2yz&3xz
\end{vmatrix}=c(-2y\hat i-3z\hat j-y\hat z)\neq0 = c ∣ ∣ i ^ ∂ x ∂ x y j ^ ∂ y ∂ 2 yz k ^ ∂ z ∂ 3 x z ∣ ∣ = c ( − 2 y i ^ − 3 z j ^ − y z ^ ) = 0
r o t E 2 = c ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z y 2 2 x y + z 2 2 y z ∣ {\rm rot\:{\bf E}_2}=c\begin{vmatrix}
\hat i & \hat j &\hat k\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2&2xy+z^2&2yz
\end{vmatrix} rot E 2 = c ∣ ∣ i ^ ∂ x ∂ y 2 j ^ ∂ y ∂ 2 x y + z 2 k ^ ∂ z ∂ 2 yz ∣ ∣
= c ( 0 i ^ + 0 j ^ + 0 z ^ ) = 0 =c(0\hat i+0\hat j+0\hat z)=\bf 0 = c ( 0 i ^ + 0 j ^ + 0 z ^ ) = 0 Answer: E 1 E_1 E 1 can not be an electric field.
The dimention of constant c c c is V / m 3 \rm V/m^3 V/ m 3
Comments