3. Among the following which can not be an electric field? E~ = c(xyi +2yzj +3xzk), E~ = c(y^2i + (2xy + z^2)j + 2yzk), where c is a constant.
What would be the dimension of c? (Problem 2.20 of Griffiths, 4th
edition)
Given:
"{\\bf E}_1 = c(xy{\\hat i} +2yz{\\hat j} +3xz{\\hat k})"
"{\\bf E}_2 = c(y^2{\\hat i} +(2xy+z^2){\\hat j} +2yz{\\hat k})"
The electrostatic field must satisfy the condition
"\\rm rot\\:{\\bf E}=\\bf 0"Let's check it
"\\rm rot\\:{\\bf E}_1=\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\nE_x&E_y&E_z\n\\end{vmatrix}""=c\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\nxy&2yz&3xz\n\\end{vmatrix}=c(-2y\\hat i-3z\\hat j-y\\hat z)\\neq0"
"{\\rm rot\\:{\\bf E}_2}=c\\begin{vmatrix}\n \\hat i & \\hat j &\\hat k\\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\ny^2&2xy+z^2&2yz\n\\end{vmatrix}"
"=c(0\\hat i+0\\hat j+0\\hat z)=\\bf 0"
Answer: "E_1" can not be an electric field.
The dimention of constant "c" is "\\rm V\/m^3"
Comments
Leave a comment