Using Maxwell’s equations in free space, derive the wave equation for the
y-component of the electric field vector.
Maxwell’s equations in free space are given by
"\\nabla\\cdot {\\bf E}=0\\\\\n\\nabla\\cdot {\\bf B}=0""\\nabla\\times {\\bf E}=-\\frac{1}{c}\\frac{\\partial {\\bf B}}{\\partial t}""\\nabla\\times {\\bf B}=\\frac{1}{c}\\frac{\\partial {\\bf E}}{\\partial t}"The last two equations give
"\\nabla\\times \\frac{\\partial{\\bf B}}{\\partial t}=\\frac{1}{c}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}""-c\\nabla\\times \\nabla\\times {\\bf E}=\\frac{1}{c}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}"
or
Using identity
"\\nabla\\times \\nabla\\times {\\bf E}=\\nabla(\\nabla\\cdot {\\bf E})-\\nabla^2{\\bf E}"and first Maxwell’s equation, we obtain
"\\nabla\\times \\nabla\\times {\\bf E}=-\\nabla^2{\\bf E}=-\\frac{1}{c^2}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}"Finally
"\\nabla^2{\\bf E}-\\frac{1}{c^2}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}=0"Also we have
"\\nabla^2E_y-\\frac{1}{c^2}\\frac{\\partial^2 E_y}{\\partial t^2}=0"
Comments
Leave a comment