Both epsilon 0 and Xe are dimensionless.
(a) True
(b) False
(1) "\\epsilon_0"
Dimensions
"F=\\frac{Kq_1q_2}{r^2}=\\frac{q_1q_2}{4\\pi \\epsilon_0 r^2}"
"\\epsilon_0=\\frac{4\\pi Fr^2}{q_1q_2}\\rightarrow(1)"
Find dimensions
Put value equation (1)
"\\epsilon_0=\\frac{[M][LT^{-2}][L^2]}{[AT]^2}"
"\\epsilon_0=[ML^3T^{-4}A^{-1}]"
"\\epsilon_0" Exist dimensions
(2)
"\\chi" dimensions
"\\chi=\\frac{M}{H}\\rightarrow(2)"
equation (2) put value
H and M dimensions put find magnetic susceptibility dimensions
"\\chi=[M^1L^1T^{-2}A^{-2}]"
"\\chi" exist dimensions
Both eqution exist dimensions
Statement are false
Option (b) is correct option
Comments
Leave a comment