The vectors field are specified as:
F = −12ax +5ay −10az
and G = 6ax +5ay −2az
Determine:
(a) The unit vector in the direction of −F + 3G
(b) The magnitude of 5ax + G − 2F
(c) |2F| |3G| (F+ G)
(d) The cross product between F and G
Gives
"F=-12a_x+5a_y-10a_z"
"G=6a_x+5a_y-2a_z"
Part(a)
-F+3G=
"-(12a_x+5a_y-10a_z)+3(6a_x+5a_y-2a_z)""-F+3G=6a_x+0a_y+4a_z"
"P=-F+3G"
"\\hat{P}=\\frac{P}{|P|}=\\frac{1}{\\sqrt52}(6a_x+4a_z)"
Part (b)
"|5a_x+G-2F|=\\sqrt{35^2+4^2+18^2}=\\sqrt{1553}=39.40"
Part(c)
2F="-24a_x+10a_y-20a_z"
"3G=18a_x+15a_y-6a_z"
"F+G=-6a_x+10a_y-12a_z"
Part(d)
"F\\times G=\\begin{bmatrix}\n a_x&a_y&a_z\\\\\n -12&5&-10\\\\\n6&5&-2\n\\end{bmatrix}"
"F\\times G=-40a_x-84a_y-90a_z"
Comments
Leave a comment