A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential
at infinity as zero, the potential at r =b < a is
Gauss law
"\\smallint E.A=\\frac{Q}{\\epsilon_0}"
r=b<a
"E.(4\\pi b^2)=\\frac{\\rho\\frac{4\\pi b^2}{3}}{\\epsilon_0}"
"\\rho=\\frac{Q}{\\frac{4\\pi a^3}{3}}"
"E_{in}=\\frac{qb}{4\\pi\\epsilon_0a^3}"
b>a
"E.A=\\frac{q}{\\epsilon_0}"
"E_0=\\frac{q}{4\\pi\\epsilon_0b^2}"
Potential
"V_a-V_{infinite}=\\smallint_{inf}^aE.dr"
"V_a=-\\smallint_{inf}^aE.dr"
"V_a=-[\\smallint_{inf}^bE_0.dr+\\smallint_{a}^bE_{in}.dr]"
"V_a=-[\\smallint_{inf}^b\\frac{kQ}{r^2}dr+\\smallint_{b}^a \\frac{kQr}{R^3}dr]"
"V_{in}=\\frac{kQ(3a^2-b^2)}{2a^3}"
"b=a;"
"V_{in}=\\frac{3Q}{8\\pi\\epsilon_0 a}"
"\u2206V=V_{in}(r=a)-V_{in}(r=0)"
"\u2206V=\\frac{-Q}{8\\pi\\epsilon_0 a}"
Comments
Leave a comment