Answer to Question #210674 in Electricity and Magnetism for Hal

Question #210674

1) If a vector field A(x,y,z)=xz3ex - 2x2yzey+2yz4ez , calculate the curl ∇ x A at point M(1,-1,-1).


1
Expert's answer
2021-06-29T05:53:02-0400

Gives


"A(x,y,z)=xz^3\\hat{e_x}+2x^2yz\\hat{e_y}+2yz^4\\hat{e_z}"

PoinM(1,-1,-1)


"\\nabla\\times A=\\begin{bmatrix}\n \\hat{e_x}&\\hat{e_y} & \\hat{e_z}\\\\\n \\frac{d}{dx}&\\frac{d}{dx}&\\frac{d}{dx}\\\\\nxz^3&-2x^2yz&2yz^4\n\\end{bmatrix}"

"\\hat{e_x}(\\frac{d}{dy}(2yz^4)+\\frac{d}{dz}(2x^2yz))-\\hat{e_y}(\\frac{d}{dx}(2yz^4)-\\frac{d}{dx}(xz^3))+\\hat{e_z}(\\frac{d}{dx}(-2x^2yz)-\\frac{d}{dy}(xz^3))"

"\\nabla\\times A=\\hat{e_x}(2z^4+2x^2y)+\\hat{e_y}(3xz^2)-\\hat{e_z}(4xyz)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog