. Using a hydrogen atom as an example, compare the gravitational
and the electrostatic forces between a proton and an electron
Using Coulomb’s Law
"F = \\dfrac{k q_1 q_2}{ r^2}"
We have, "q_1 = q_2 = 1.6 \\times 10^-{19} C"
"r = 0.05nm" (in the case of Hydrogen atom)
Hence,
"F = \\dfrac{9 \\times 10^9 \\times 1.6 \\times 10^{-19} \\times 1.6 \\times 10^{-19}}{(0.05\\times 10^{-9})^2}"
"F = 9.216 \\times 10^{-8}N"
Using Newton’s Universal Gravitational Law,
"F =\\dfrac{ G m_1 m_2 }{ r^2}"
We can determine the strength of the gravitational force between the proton and electron.
Mass of electron "= m_1 = 9.1 \\times 10^{-31}kg"
Mass of proton "= m_2 = 1.67 \\times 10^{-27}kg"
Hence,
"F = \\dfrac{6.67 \\times10^{-11} \\times 9.1 \\times 10^{-31} \\times 1.67 \\times 10^{-27}}{(0.05 \\times 10^{-9})^2}"
"F = 40.544 \\times 10^{-45}N"
Hence, we can compare the gravitational and the electrostatic forces between a Proton and an Electron.
Comments
Leave a comment