Consider the two dipoles that are located on a line with dipole moments - 5 Γ 10β9 πΆ. π and 9 Γ 10β9 πΆ. π, Find the Electric potential at the center of the line. Now, replace the electric dipoles with the magnetic dipoles such that their dipole moments are 5 Γ 10β9 π΄. π2 and 9 Γ 10β9 π΄. π2 . Find the magnetic field at the center.Β
Given,
"p_1=- 5\\times10^{\u22129} \ud835\udc36. \ud835\udc5a"
"p_2=9\\times10^{\u22129} \ud835\udc36. \ud835\udc5a"
Electric potential at the center of the line
"V=\\frac{p}{4\\pi \\epsilon_o (r^2-a^2)}"
Hence, net potential at the center "(V)=V_1+V_2"
"=\\frac{-5\\times 10^{-9}}{4\\pi \\epsilon_o (r^2-a^2)}+\\frac{9\\times 10^{-9}}{4\\pi \\epsilon_o (r^2-a^2)}"
"=\\frac{4\\times 10^{-9}}{4\\pi \\epsilon_o (r^2-a^2)}"
Magnetic dipole at the center of dipole
"B=B_1+B_2"
"=\\frac{\\mu_o m_1}{4\\pi (d-l)^2}+\\frac{\\mu_o m_2}{4\\pi (d-l)^2}"
Now, substituting the values,
"=\\frac{\\mu_o 5\\times 10^{-9}}{4\\pi (d-l)^2}+\\frac{\\mu_o 9\\times 10^{-9}}{4\\pi (d-l)^2}"
"=\\frac{14\\times 10^{-7}\\times 10^{-9}}{(d-l)^2}"
"=\\frac{14\\times 10^{-16}}{(d-l)^2}"
Comments
Leave a comment