Flux is defined in vector notation as the integral of the field intensity vector over the needed area.
Flux = ∫ s F d S \qquad\qquad
\begin{aligned}
\small \text{Flux}&=\small \int_s \bold{F}d\bold{S}
\end{aligned} Flux = ∫ s F d S
Gauss's theorem says that the surface integral can also be written as a volume integral of the divergence of that particular vector field.
In notation,
∫ s F d S = ∭ v d i v F . d v \qquad\qquad
\begin{aligned}
\small \int_s\bold{F}\bold{dS}&= \small \iiint_v div \bold{F}.dv
\end{aligned} ∫ s F dS = ∭ v d i v F . d v
Therefore, replacing F with the given A, flux can be calculated
d i v A = ∇ A = ( i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z ) . ( x 3 i + x 2 j + y z k ) = ∂ ( x 3 ) ∂ x + ∂ ( x 2 z ) ∂ y + ∂ ( y z ) ∂ z = 3 x 2 + 0 + y = 3 x 2 + y \qquad\qquad
\begin{aligned}
\small div\bold{A}&= \small \nabla\bold{A}\\
&=\bigg(i\frac{\partial}{\partial x}+j\frac{\partial}{\partial y}+k\frac{\partial}{\partial z}\bigg).(x^3i+x^2j+yzk)\\
&=\small \frac{\partial(x^3)}{\partial x}+\frac{\partial(x^2z)}{\partial y}+\frac{\partial(yz)}{\partial z}\\
&= \small 3x^2+0+y\\
&=\small 3x^2+y
\end{aligned} d i v A = ∇ A = ( i ∂ x ∂ + j ∂ y ∂ + k ∂ z ∂ ) . ( x 3 i + x 2 j + yz k ) = ∂ x ∂ ( x 3 ) + ∂ y ∂ ( x 2 z ) + ∂ z ∂ ( yz ) = 3 x 2 + 0 + y = 3 x 2 + y
And d v dv d v is the infinitesimal volume which can be written as d v = d x d y d z dv=dxdydz d v = d x d y d z
Then applying all these,
Flux = ∭ ( 3 x 2 + y ) d x d y d z \qquad\qquad
\begin{aligned}
\small \text{Flux}&= \small \iiint(3x^2+y)dxdydz
\end{aligned} Flux = ∭ ( 3 x 2 + y ) d x d y d z
To proceed further, limits of xyz variables are needed. To define limits, define a coordinate system from the bottom vertex of the box such as it is bounded by x=0, x=2, y=0, y=2, z=0 & z=2.
Then having those limits input, that can be integrated with respect to one variable at a time.
= ∬ d x d y ∫ 0 2 ( 3 x 2 + y ) d z = ∬ d x d y ( 3 x 2 z + y z ∣ 0 2 = ∫ d x ∫ 0 2 ( 6 x 2 + 2 y ) d y = ∫ d x ( 6 x 2 y + y 2 ∣ 0 2 = ∫ 0 2 ( 12 x 2 + 4 ) d x = ( 4 x 3 + 4 x ∣ 0 2 Flux = 40 \qquad\qquad
\begin{aligned}
&=\small \iint dxdy \int_0^2 (3x^2+y) dz\\
&= \small \iint dxdy (3x^2z+yz\big|_0^2\\
&=\small \int dx \int_0^2 (6x^2+2y)dy\\
&=\small \int dx(6x^2y+y^2\big|_0^2\\
&=\small \int_0^2 (12x^2+4)dx\\
&=\small (4x^3+4x\Big|_0^2\\
\small \text{Flux}&=\small \bold{40}
\end{aligned} Flux = ∬ d x d y ∫ 0 2 ( 3 x 2 + y ) d z = ∬ d x d y ( 3 x 2 z + yz ∣ ∣ 0 2 = ∫ d x ∫ 0 2 ( 6 x 2 + 2 y ) d y = ∫ d x ( 6 x 2 y + y 2 ∣ ∣ 0 2 = ∫ 0 2 ( 12 x 2 + 4 ) d x = ( 4 x 3 + 4 x ∣ ∣ 0 2 = 40
Comments