1) Let charge Q 1 Q_1 Q 1 placed at the top vertice of the equilateral triangle and charges Q 2 Q_2 Q 2 and Q 3 Q_3 Q 3 placed in the corners of the base of the equilateral triangle. Let the side Q 1 Q 2 Q_1Q_2 Q 1 Q 2 be the x x x -axis. The net force on charge Q 2 Q_2 Q 2 is the vector sum of forces F 12 F_{12} F 12 and F 32 F_{32} F 32 due to charges Q 1 Q_1 Q 1 and Q 3 Q_3 Q 3 .
Let’s find the magnitudes of these forces:
F 12 = k ∣ Q 1 Q 2 ∣ r 2 , F_{12}=\dfrac{k|Q_1Q_2|}{r^2}, F 12 = r 2 k ∣ Q 1 Q 2 ∣ , F 12 = 9 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ 6.7 ⋅ 1 0 − 6 C ⋅ ( − 9.4 ⋅ 1 0 − 6 C ) ∣ ( 1.2 m ) 2 = 0.394 N , F_{12}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|6.7\cdot10^{-6}\ C\cdot(-9.4\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.394\ N, F 12 = ( 1.2 m ) 2 9 ⋅ 1 0 9 C 2 N m 2 ⋅ ∣6.7 ⋅ 1 0 − 6 C ⋅ ( − 9.4 ⋅ 1 0 − 6 C ) ∣ = 0.394 N , F 32 = k ∣ Q 3 Q 2 ∣ r 2 , F_{32}=\dfrac{k|Q_3Q_2|}{r^2}, F 32 = r 2 k ∣ Q 3 Q 2 ∣ , F 32 = 9 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ ( − 4.9 ⋅ 1 0 − 6 C ) ⋅ ( − 9.4 ⋅ 1 0 − 6 C ) ∣ ( 1.2 m ) 2 = 0.288 N . F_{32}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|(-4.9\cdot10^{-6}\ C)\cdot(-9.4\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.288\ N. F 32 = ( 1.2 m ) 2 9 ⋅ 1 0 9 C 2 N m 2 ⋅ ∣ ( − 4.9 ⋅ 1 0 − 6 C ) ⋅ ( − 9.4 ⋅ 1 0 − 6 C ) ∣ = 0.288 N . Then, we can find the projections of forces F 12 F_{12} F 12 and F 32 F_{32} F 32 on axis x x x and y y y :
F x = F 12 x + F 32 x = − 0.394 N − 0.288 N ⋅ c o s 6 0 ∘ = − 0.538 N , F_x=F_{12x}+F_{32x}=-0.394\ N-0.288\ N\cdot cos60^{\circ}=-0.538 N, F x = F 12 x + F 32 x = − 0.394 N − 0.288 N ⋅ cos 6 0 ∘ = − 0.538 N , F y = F 12 y + F 32 y = 0 − 0.288 N ⋅ s i n 6 0 ∘ = − 0.249 N . F_y=F_{12y}+F_{32y}=0-0.288\ N\cdot sin60^{\circ}=-0.249 N. F y = F 12 y + F 32 y = 0 − 0.288 N ⋅ s in 6 0 ∘ = − 0.249 N . Finally, the net electric force can be found from the Pythagorean theorem:
F n e t = F x 2 + F y 2 , F_{net}=\sqrt{F_x^2+F_y^2}, F n e t = F x 2 + F y 2 , F n e t = ( − 0.538 N ) 2 + ( − 0.249 N ) 2 = 0.593 N . F_{net}=\sqrt{(-0.538\ N)^2+(-0.249\ N)^2}=0.593\ N. F n e t = ( − 0.538 N ) 2 + ( − 0.249 N ) 2 = 0.593 N . 2) Let the side Q 1 Q 3 Q_1Q_3 Q 1 Q 3 be the x x x -axis. The net force on charge Q 3 Q_3 Q 3 is the vector sum of forces F 13 F_{13} F 13 and F 23 F_{23} F 23 due to charges Q 1 Q_1 Q 1 and Q 2 Q_2 Q 2 .
Let’s find the magnitudes of these forces:
F 13 = k ∣ Q 1 Q 3 ∣ r 2 , F_{13}=\dfrac{k|Q_1Q_3|}{r^2}, F 13 = r 2 k ∣ Q 1 Q 3 ∣ , F 13 = 9 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ 6.7 ⋅ 1 0 − 6 C ⋅ ( − 4.9 ⋅ 1 0 − 6 C ) ∣ ( 1.2 m ) 2 = 0.205 N , F_{13}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|6.7\cdot10^{-6}\ C\cdot(-4.9\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.205\ N, F 13 = ( 1.2 m ) 2 9 ⋅ 1 0 9 C 2 N m 2 ⋅ ∣6.7 ⋅ 1 0 − 6 C ⋅ ( − 4.9 ⋅ 1 0 − 6 C ) ∣ = 0.205 N , F 23 = k ∣ Q 2 Q 3 ∣ r 2 , F_{23}=\dfrac{k|Q_2Q_3|}{r^2}, F 23 = r 2 k ∣ Q 2 Q 3 ∣ , F 23 = 9 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ ( − 9.4 ⋅ 1 0 − 6 C ) ⋅ ( − 4.9 ⋅ 1 0 − 6 C ) ∣ ( 1.2 m ) 2 = 0.288 N . F_{23}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|(-9.4\cdot10^{-6}\ C)\cdot(-4.9\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.288\ N. F 23 = ( 1.2 m ) 2 9 ⋅ 1 0 9 C 2 N m 2 ⋅ ∣ ( − 9.4 ⋅ 1 0 − 6 C ) ⋅ ( − 4.9 ⋅ 1 0 − 6 C ) ∣ = 0.288 N . Then, we can find the projections of forces F 13 F_{13} F 13 and F 23 F_{23} F 23 on axis x x x and y y y :
F x = F 13 x + F 23 x = − 0.205 N + 0.288 N ⋅ c o s 6 0 ∘ = − 0.061 N , F_x=F_{13x}+F_{23x}=-0.205\ N+0.288\ N\cdot cos60^{\circ}=-0.061 N, F x = F 13 x + F 23 x = − 0.205 N + 0.288 N ⋅ cos 6 0 ∘ = − 0.061 N , F y = F 13 y + F 23 y = 0 − 0.288 N ⋅ s i n 6 0 ∘ = − 0.249 N . F_y=F_{13y}+F_{23y}=0-0.288\ N\cdot sin60^{\circ}=-0.249 N. F y = F 13 y + F 23 y = 0 − 0.288 N ⋅ s in 6 0 ∘ = − 0.249 N . Finally, the net electric force can be found from the Pythagorean theorem:
F n e t = F x 2 + F y 2 , F_{net}=\sqrt{F_x^2+F_y^2}, F n e t = F x 2 + F y 2 , F n e t = ( − 0.061 N ) 2 + ( − 0.249 N ) 2 = 0.256 N . F_{net}=\sqrt{(-0.061\ N)^2+(-0.249\ N)^2}=0.256\ N. F n e t = ( − 0.061 N ) 2 + ( − 0.249 N ) 2 = 0.256 N . 3) We can find the direction of the net force on charge Q 3 Q_3 Q 3 as follows:
c o s θ = F x F n e t , cos\theta=\dfrac{F_x}{F_{net}}, cos θ = F n e t F x , θ = c o s − 1 ( F x F n e t ) = c o s − 1 ( − 0.061 N 0.256 N ) = 10 4 ∘ . \theta=cos^{-1}(\dfrac{F_x}{F_{net}})=cos^{-1}(\dfrac{-0.061 N}{0.256\ N})=104^{\circ}. θ = co s − 1 ( F n e t F x ) = co s − 1 ( 0.256 N − 0.061 N ) = 10 4 ∘ .
Comments