Question #163146

Three charged particles are placed at the corners of an equilateral triangle of side 1.20 m. The charges are Q1= 6.7 μC, Q2 = -9.4 μC, Q3= -4.9 μC .


  1. Calculate the magnitude of the net force on particle 2 due to the other two.
  2. Calculate the magnitude of the net force on particle 3 due to the other two.
  3. Calculate the direction of the net force on particle 3 due to the other two.
1
Expert's answer
2021-02-12T16:17:27-0500

1) Let charge Q1Q_1 placed at the top vertice of the equilateral triangle and charges Q2Q_2 and Q3Q_3 placed in the corners of the base of the equilateral triangle. Let the side Q1Q2Q_1Q_2 be the xx-axis. The net force on charge Q2Q_2 is the vector sum of forces F12F_{12} and F32F_{32} due to charges Q1Q_1 and Q3Q_3.

Let’s find the magnitudes of these forces:


F12=kQ1Q2r2,F_{12}=\dfrac{k|Q_1Q_2|}{r^2},F12=9109 Nm2C26.7106 C(9.4106 C)(1.2 m)2=0.394 N,F_{12}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|6.7\cdot10^{-6}\ C\cdot(-9.4\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.394\ N,F32=kQ3Q2r2,F_{32}=\dfrac{k|Q_3Q_2|}{r^2},F32=9109 Nm2C2(4.9106 C)(9.4106 C)(1.2 m)2=0.288 N.F_{32}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|(-4.9\cdot10^{-6}\ C)\cdot(-9.4\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.288\ N.

Then, we can find the projections of forces F12F_{12} and F32F_{32} on axis xx and yy:


Fx=F12x+F32x=0.394 N0.288 Ncos60=0.538N,F_x=F_{12x}+F_{32x}=-0.394\ N-0.288\ N\cdot cos60^{\circ}=-0.538 N,Fy=F12y+F32y=00.288 Nsin60=0.249N.F_y=F_{12y}+F_{32y}=0-0.288\ N\cdot sin60^{\circ}=-0.249 N.

Finally, the net electric force can be found from the Pythagorean theorem:


Fnet=Fx2+Fy2,F_{net}=\sqrt{F_x^2+F_y^2},Fnet=(0.538 N)2+(0.249 N)2=0.593 N.F_{net}=\sqrt{(-0.538\ N)^2+(-0.249\ N)^2}=0.593\ N.

2) Let the side Q1Q3Q_1Q_3 be the xx-axis. The net force on charge Q3Q_3 is the vector sum of forces F13F_{13} and F23F_{23} due to charges Q1Q_1 and Q2Q_2.

Let’s find the magnitudes of these forces:


F13=kQ1Q3r2,F_{13}=\dfrac{k|Q_1Q_3|}{r^2},F13=9109 Nm2C26.7106 C(4.9106 C)(1.2 m)2=0.205 N,F_{13}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|6.7\cdot10^{-6}\ C\cdot(-4.9\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.205\ N,F23=kQ2Q3r2,F_{23}=\dfrac{k|Q_2Q_3|}{r^2},F23=9109 Nm2C2(9.4106 C)(4.9106 C)(1.2 m)2=0.288 N.F_{23}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot|(-9.4\cdot10^{-6}\ C)\cdot(-4.9\cdot10^{-6}\ C)|}{(1.2\ m)^2}=0.288\ N.

Then, we can find the projections of forces F13F_{13} and F23F_{23} on axis xx and yy:


Fx=F13x+F23x=0.205 N+0.288 Ncos60=0.061N,F_x=F_{13x}+F_{23x}=-0.205\ N+0.288\ N\cdot cos60^{\circ}=-0.061 N,Fy=F13y+F23y=00.288 Nsin60=0.249N.F_y=F_{13y}+F_{23y}=0-0.288\ N\cdot sin60^{\circ}=-0.249 N.

Finally, the net electric force can be found from the Pythagorean theorem:


Fnet=Fx2+Fy2,F_{net}=\sqrt{F_x^2+F_y^2},Fnet=(0.061 N)2+(0.249 N)2=0.256 N.F_{net}=\sqrt{(-0.061\ N)^2+(-0.249\ N)^2}=0.256\ N.

3) We can find the direction of the net force on charge Q3Q_3 as follows:


cosθ=FxFnet,cos\theta=\dfrac{F_x}{F_{net}},θ=cos1(FxFnet)=cos1(0.061N0.256 N)=104.\theta=cos^{-1}(\dfrac{F_x}{F_{net}})=cos^{-1}(\dfrac{-0.061 N}{0.256\ N})=104^{\circ}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS