Let f 1 = 108 × 1 0 6 H z f_1 = 108\times 10^6Hz f 1 = 108 × 1 0 6 Hz , f 2 = 90.5 × 1 0 6 H z f_2 = 90.5\times10^6Hz f 2 = 90.5 × 1 0 6 Hz . The formulas for resonant frequencies are:
f 1 = 1 2 π C 1 L f 2 = 1 2 π C 2 L f_1 = \dfrac{1}{2\pi\sqrt{C_1L}}\\
f_2 = \dfrac{1}{2\pi\sqrt{C_2L}} f 1 = 2 π C 1 L 1 f 2 = 2 π C 2 L 1 where C 1 , C 2 C_1, C_2 C 1 , C 2 are corresponding capacitances. Dividing the first expression by the second and expressing ratio C 2 / C 1 C_2/C_1 C 2 / C 1 , obtain:
C 2 C 1 = ( f 1 f 2 ) 2 C 2 C 1 = ( 108 × 1 0 6 90.5 × 1 0 6 ) 2 ≈ 1.42 \dfrac{C_2}{C_1} = \left( \dfrac{f_1}{f_2} \right)^2\\
\dfrac{C_2}{C_1} = \left( \dfrac{108\times 10^6}{90.5\times10^6} \right)^2 \approx 1.42 C 1 C 2 = ( f 2 f 1 ) 2 C 1 C 2 = ( 90.5 × 1 0 6 108 × 1 0 6 ) 2 ≈ 1.42 Answer. The capacitance changed by a factor of 1.42.
Comments