Answer to Question #157200 in Electricity and Magnetism for Priya

Question #157200

Using Maxwell's equation in vacuum, derive the wave equation for the x-component of the electric field vector associated with an electromagnetic wave


1
Expert's answer
2021-01-25T14:05:28-0500

"\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{E}=-\\frac{\\partial \\overrightarrow{B}}{\\partial t }""\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{E}=-\\frac{\\partial \\overrightarrow{B}}{\\partial t }""\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{E}=-\\frac{\\partial \\overrightarrow{B}}{\\partial t }""\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{E}=-\\frac{\\partial \\overrightarrow{B}}{\\partial t }"


"\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{B}=\\mu_0\\epsilon_0\\frac{\\partial \\overrightarrow{E}}{\\partial t }"

"\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{B}=\\mu_0\\epsilon_0\\frac{\\partial \\overrightarrow{E}}{\\partial t }""\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{B}=\\mu_0\\epsilon_0\\frac{\\partial \\overrightarrow{E}}{\\partial t }""\u200b\\overrightarrow{\\nabla}\\times\\overrightarrow{B}=\\mu_0\\epsilon_0\\frac{\\partial \\overrightarrow{E}}{\\partial t }"




"\\overrightarrow{\\nabla}\\times\\overrightarrow{E}(x,t)\\overrightarrow{i}=\\begin{vmatrix} \\overrightarrow{i} & \\overrightarrow{j} & \\overrightarrow{k}\\\\ \\frac{\\partial }{\\partial x } & \\frac{\\partial }{\\partial y } & \\frac{\\partial }{\\partial z } \\\\ \\overrightarrow{E}(x,t) &0 & 0 \\end{vmatrix}=\\frac{\\partial E}{\\partial x }\\overrightarrow{j}"






"\\overrightarrow{\\nabla}\\times\\overrightarrow{B}(x,t)\\overrightarrow{j}=\\begin{vmatrix} \\overrightarrow{i} & \\overrightarrow{j} & \\overrightarrow{k}\\\\ \\frac{\\partial }{\\partial x } & \\frac{\\partial }{\\partial y } & \\frac{\\partial }{\\partial z } \\\\ 0 & \\overrightarrow{B}(x,t) & 0 \\end{vmatrix}=-\\frac{\\partial B}{\\partial x }\\overrightarrow{i}"







"\\frac{\\partial E}{\\partial x }=-\\frac{\\partial B}{\\partial t }"






"\\frac{\\partial B}{\\partial x }=-\\mu_0\\epsilon_0\\frac{\\partial E}{\\partial t }"


"\\frac{\\partial^2 E}{\\partial x^2 }=-\\frac{\\partial}{\\partial x }\\frac{\\partial B}{\\partial t }=-\\frac{\\partial}{\\partial t }\\frac{\\partial B}{\\partial x }=-\\frac{\\partial}{\\partial t }(-\\mu_0\\epsilon_0\\frac{\\partial E}{\\partial t })=\\mu_0\\epsilon_0\\frac{\\partial^2 E}{\\partial t^2 }"


"\\frac{\\partial^2 E}{\\partial x^2 }=\\mu_0\\epsilon_0\\frac{\\partial^2 E}{\\partial t^2 }"






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment