Two point charges are placed as follows: charge q_{1} = - 1.50nC is at y = 6.00 m and charge q_{2} = 3.20nC is at the origin. What is the total force (magnitude and direction) exerted by these two charges on a negative point charge q_{3} = - 5.00nC located at (2.00 m, -4.00 m)?
Solution.
"q1=-1.50\\sdot10^{-9} C;"
"q2=3.20\\sdot10^{-9} C;"
"y=6.00 m;"
"q3=-5.00\\sdot10^{-9}C;\n(2.00m;-4.00m);"
"F-?;"
"F_{13}=k\\dfrac{q_1q_3}{r_{13}^2};"
"F_{13}=9\\sdot10^9\\dfrac{1.5\\sdot10^{-9}\\sdot5.00\\sdot10^{-9}}{10^2+2^2}=6.49\\sdot10^{-10}N;"
"F_{23}=k\\dfrac{q_2q_3}{r_{23}^2};"
"F_{23}=9\\sdot10^9\\dfrac{3.2\\sdot10^{-9}\\sdot5.00\\sdot10^{-9}}{4^2+2^2}=72\\sdot10^{-10}N;"
"F_{13x}=F_{13}\\sdot cos\\alpha=6.49\\sdot10^{-10}\\sdot\\dfrac{2}{\\sqrt{10^2+2^2}}=1.27\\sdot10^{-10}N;"
"F_{13y}=F_{13}\\sdot sin\\alpha=6.49\\sdot10^{-10}\\sdot\\dfrac{10}{\\sqrt{10^2+2^2}}=6.36\\sdot10^{-10}N;"
"F_{23x}=F_{23}\\sdot cos\\alpha=72\\sdot10^{-10}\\sdot\\dfrac{2}{\\sqrt{4^2+2^2}}=32.20\\sdot10^{-10}N;"
"F_{23y}=F_{23}\\sdot sin\\alpha=72\\sdot10^{-10}\\sdot\\dfrac{4}{\\sqrt{10^2+2^2}}=64.40\\sdot10^{-10}N;"
"F_x=F_{13x}-F_{23x}=1.27\\sdot10^{-10}-32.20\\sdot10^{-10}=-30.93\\sdot10^{-10}N;"
"F_{y}=F_{23y}-F_{13y}=64.40\\sdot10^{-10}-6.36\\sdot10^{-10}=58.04\\sdot10^{-10}N;"
"F=\\sqrt{F_{x}^2+F_{y}^2}=\\sqrt{(-30.93\\sdot10^{-10})^2+(58.04\\sdot10^{-10})^2}=65.80\\sdot10^{-10}N;"
"tan\\gamma=\\dfrac{58.04\\sdot10^{-10}}{30.93\\sdot10^{-10}}=1.876;"
"\\gamma=62^o or118^o;"
Answer: "F=65.80\\sdot 10^{-10}N, \\gamma=62^o or 118^o."
Comments
Leave a comment