Determine the Z parameters of the network shown below and check the symmetry and reciprocity of the network. Also find the h parameters of the network.
We know that
"V_1=z_{11}I_1+z_{12}I_2"
"V_2=z_{21}I_1+z_{22}I_2"
"h_{11}=\\frac{V_1}{I_1},V_2=0"
"h_{21}=\\frac{I_2}{I_1},V_2=0"
"V_2=0"
"z_{21}I_1+z_{22}I_2=0"
"h_{21}=\\frac{I_2}{I_1}=-\\frac{z_{21}}{z_{22}}"
"h_{11}=\\frac{z_{11}z_{22}-z_{12}z_{21}}{z_{22}}=\\frac{\u2206_z}{z_{11}}"
"V_1=z_{12}I_2"
"V_2=z_{22}I_2"
"h_{12}=\\frac{V_1}{V_2},I_1=0"
"h_{22}=\\frac{I_2}{V_2},I_1=0"
"h_{12}=\\frac{V_1}{V_2}=\\frac{z_{12}}{z_{22}}"
"h_{22}=\\frac{I_2}{V_2}=\\frac{1}{z_{22}}"
"\\begin{bmatrix}\n h_{11} & h_{12} \\\\\n h_{13} & h_{14}\n\\end{bmatrix}" "=\\begin{bmatrix}\n \\frac{\u2206_z}{z_{22}} & \\frac{z_{12}}{z_22}\\\\\n -\\frac{z_{21}}{z_{22}} & \\frac{1}{z_{22}}\n\\end{bmatrix}"
Comments
Leave a comment