Answer to Question #216165 in Electric Circuits for M fathima Nissar

Question #216165

Determine the Z parameters of the network shown below and check the symmetry and reciprocity of the network. Also find the h parameters of the network. 


1
Expert's answer
2021-07-12T13:27:23-0400

We know that

V1=z11I1+z12I2V_1=z_{11}I_1+z_{12}I_2

V2=z21I1+z22I2V_2=z_{21}I_1+z_{22}I_2

h11=V1I1,V2=0h_{11}=\frac{V_1}{I_1},V_2=0

h21=I2I1,V2=0h_{21}=\frac{I_2}{I_1},V_2=0

V2=0V_2=0

z21I1+z22I2=0z_{21}I_1+z_{22}I_2=0

h21=I2I1=z21z22h_{21}=\frac{I_2}{I_1}=-\frac{z_{21}}{z_{22}}

h11=z11z22z12z21z22=zz11h_{11}=\frac{z_{11}z_{22}-z_{12}z_{21}}{z_{22}}=\frac{∆_z}{z_{11}}

V1=z12I2V_1=z_{12}I_2


V2=z22I2V_2=z_{22}I_2

h12=V1V2,I1=0h_{12}=\frac{V_1}{V_2},I_1=0

h22=I2V2,I1=0h_{22}=\frac{I_2}{V_2},I_1=0

h12=V1V2=z12z22h_{12}=\frac{V_1}{V_2}=\frac{z_{12}}{z_{22}}

h22=I2V2=1z22h_{22}=\frac{I_2}{V_2}=\frac{1}{z_{22}}

[h11h12h13h14]\begin{bmatrix} h_{11} & h_{12} \\ h_{13} & h_{14} \end{bmatrix} =[zz22z12z22z21z221z22]=\begin{bmatrix} \frac{∆_z}{z_{22}} & \frac{z_{12}}{z_22}\\ -\frac{z_{21}}{z_{22}} & \frac{1}{z_{22}} \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment