Calculate the resistance of 110-V light bulbs rated at 25, 60, 75 and 100W.
Gives
V=110V
We know that
R=V2PR=\frac{V^2}{P}R=PV2
R1=V2P1=110225=484ΩR_1=\frac{V^2}{P_1}=\frac{110^2}{25}=484\OmegaR1=P1V2=251102=484Ω
R2=V2P2=110260=201ΩR_2=\frac{V^2}{P_2}=\frac{110^2}{60}=201\OmegaR2=P2V2=601102=201Ω
R3=V2P3=110275=161ΩR_3=\frac{V^2}{P_3}=\frac{110^2}{75}=161\OmegaR3=P3V2=751102=161Ω
R4=V2P4=1102100=121ΩR_4=\frac{V^2}{P_4}=\frac{110^2}{100}=121\OmegaR4=P4V2=1001102=121Ω
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments