Explanations & Calculations
Let's consider the charge q3 90 degrees to the north of q1: at the top (north) & q2 is 90 degrees to the right of q1: (east). Then the goal is to calculate the force on q1 from the other two: q2 & q3.
From Coulomb's law, force on q1 from q2, F 1 = k ∣ q 1 ∣ ∣ q 2 ∣ r 2 = 9 × 1 0 − 9 N m 2 C − 2 ⋅ 3 × 1 0 − 5 × 5 × 1 0 − 5 0. 3 2 m 2 = 1.5 × 1 0 − 16 N [ attractive: to the east towards q2 ] \qquad\qquad
\begin{aligned}
\small F_1&= \small k\frac{|q_1||q_2|}{r^2}\\
&=\small 9\times10^{-9}Nm^2C^{-2}\cdot\frac{3\times10^{-5}\times5\times10^{-5}}{0.3^2m^2}\\
&=\small 1.5\times10^{-16}N\,[\text{attractive: to the east towards q2}]
\end{aligned} F 1 = k r 2 ∣ q 1 ∣∣ q 2 ∣ = 9 × 1 0 − 9 N m 2 C − 2 ⋅ 0. 3 2 m 2 3 × 1 0 − 5 × 5 × 1 0 − 5 = 1.5 × 1 0 − 16 N [ attractive: to the east towards q2 ]
F 2 = 9 × 1 0 − 9 ⋅ ( 3 × 1 0 − 5 ) × ( 5 × 1 0 − 5 ) 0. 3 2 = 1.5 × 1 0 − 16 N [ attractive: to the North towards q3 ] \qquad\qquad
\begin{aligned}
\small F_2&=\small 9\times10^{-9}\cdot\frac{(3\times10^{-5})\times(5\times10^{-5})}{0.3^2}\\
&=\small 1.5\times10^{-16}N\,[\text{attractive: to the North towards q3}]
\end{aligned} F 2 = 9 × 1 0 − 9 ⋅ 0. 3 2 ( 3 × 1 0 − 5 ) × ( 5 × 1 0 − 5 ) = 1.5 × 1 0 − 16 N [ attractive: to the North towards q3 ]
As it can be seen ∣ F 1 ∣ = ∣ F 2 ∣ \small |F_1|=|F_2| ∣ F 1 ∣ = ∣ F 2 ∣ and they are orthogonal. Then it is about finding the resultant of those two to calculate the net electric force on q1. Then, F n e t = ∣ F 1 ∣ 2 + ∣ F 2 ∣ 2 = 2 ∣ F 1 ∣ 2 = 2 ⋅ ∣ F 1 ∣ = 2 × 1.5 × 1 0 − 16 N = 2.12 × 1 0 − 16 N θ = tan − 1 ∣ F 1 ∣ ∣ F 2 ∣ = tan − 1 ( 1 ) = 4 5 0 \qquad\qquad
\begin{aligned}
\small F_{net}&=\small \sqrt{|F_1|^2+|F_2|^2}\\
&=\small \sqrt{2|F_1|^2}\\
&=\small \sqrt2\cdot|F_1|\\
&=\small\sqrt2\times1.5\times10^{-16}\,N\\
&=\small \bold{2.12\times10^{-16}\,N}\\
\\
\small \theta&=\small\tan^{-1}\frac{|F_1|}{|F_2|}=\tan^{-1}(1)=45^0
\end{aligned} F n e t θ = ∣ F 1 ∣ 2 + ∣ F 2 ∣ 2 = 2∣ F 1 ∣ 2 = 2 ⋅ ∣ F 1 ∣ = 2 × 1.5 × 1 0 − 16 N = 2.12 × 1 0 − 16 N = tan − 1 ∣ F 2 ∣ ∣ F 1 ∣ = tan − 1 ( 1 ) = 4 5 0
Therefore, the net force is, F n e t = 2.12 × 1 0 − 16 N [ 4 5 0 N o f E ] \qquad\qquad\small F_{net}=2.12\times10^{-16}N[45^0 N \,of\,E] F n e t = 2.12 × 1 0 − 16 N [ 4 5 0 N o f E ]
Comments