Question #159594
A 4.0 x 10^(-6) F capacitor is connected in series with a 3.0 x 10^(-6) F capacitor. This series combination is connected in parallek with a 6.0 x 10^(-6) F capacitor. The whole arrangement is then connected in series with a 12.0 V battery.
(i) Draw a curcuit diagram of the arrangement described above
(ii) Calculate the total charge in stored in the circuit and hence calculate the charge stored in each capacitor.
1
Expert's answer
2021-02-18T18:56:40-0500

(a) The curcuit diagram of the arrangement described above:



(b) The total charge stored in circuit:


q=CVb,q=CV_b,


where C - the equivalent capacitance of the circuit:


C=C1C2C1+C2+C3.C=\frac{C_1C_2}{C_1+C_2}+C_3.


So, q=Vb(C1C2C1+C2+C3)=12(410631064106+3106+6106)9.3105 C.q=V_b(\frac{C_1C_2}{C_1+C_2}+C_3)=12(\frac{4\cdot 10^{-6}\cdot 3\cdot 10^{-6}}{4\cdot 10^{-6}+3\cdot 10^{-6}}+6\cdot 10^{-6})\approx 9.3\cdot 10^{-5}\space C.


The charge stored in C3:


q3=C3Vb=610612=7.2105 C.q_3=C_3V_b=6\cdot 10^{-6}\cdot12=7.2\cdot 10^{-5}\space C.


The charges stored in two capacitors C1 and C2, connected in series:


q1=q2=q122,q_1=q_2=\frac{q_{12}}{2},


q12=C12Vb,q_{12}=C_{12}V_b,


where C12C_{12} - the equivalent capacitance of two capacitors, connected in series:


C12=C1C2C1+C2.C_{12}=\frac{C_1C_2}{C_1+C_2}.


So, q1=q2=VbC1C22(C1+C2)=12410631062(4106+3106)1.05105 C.q_1=q_2=\frac{V_bC_1C_2}{2(C_1+C_2)}=\frac{12\cdot 4\cdot 10^{-6}\cdot 3\cdot 10^{-6}}{2(4\cdot 10^{-6}+3\cdot 10^{-6})}\approx 1.05\cdot 10^{-5}\space C.


Answer: the total charge is 9.3105 C9.3\cdot 10^{-5}\space C; the charges stored in each capacitor: q1=q2=1.05105 Cq_1=q_2=1.05\cdot 10^{-5}\space C, q3=7.2105 Cq_3=7.2\cdot 10^{-5}\space C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Lev-worth
02.02.22, 05:44

incredible web i usual come across ever. You're the best keep it up.

LATEST TUTORIALS
APPROVED BY CLIENTS