Check whether or not the function f, defined on R by
f(x) = { 3x^2sin(1/2x), when x≠0
{ 0 ,when x=0
is derivable on R. If it is, is f' continuous at x=0? If f is not derivable , then define a derivable function on R
Apply the Squeeze Theorem:
Then
We see that
Then by the Squeeze Theorem
"\\lim\\limits_{x\\to0}(3x^2\\sin(1\/2x))=0=f(0)"
The function "f(x)" is continuous on "\\R."
Apply the Squeeze Theorem:
Then
We see that
Then by the Squeeze Theorem
"=\\lim\\limits_{h\\to0}(3h\\sin(1\/2h))=0=f'(0)"
The function "f(x)" is derivable on "\\R."
"=6x\\sin(1\/2x)-\\dfrac{3}{2}\\cos(1\/2x)"
"\\lim\\limits_{x\\to0}(\\cos(1\/2x))=\\text{does not exist}"
If "x_n=\\dfrac{1}{4\\pi n}" then "\\cos(1\/2x_n)=1, n\\to \\infin"
If "x_n=\\dfrac{1}{\\pi+2\\pi n}" then "\\cos(1\/2x_n)=0, n\\to \\infin"
Therefore "\\lim\\limits_{x\\to0}(f'(x))=\\text{does not exist}."
The function "f'(x)" is not continuous on "\\R."
Comments
Leave a comment