True or false with full explanation
i. Every continuous function is differentiable.
ii. Every integrable function is monotonic
ANSWER Both statements are false.
EXPLANATION
Let
"f(x)=\\begin{cases}\n & \\text -2 x+1,\\, \\, \\, { if } \\, -1\\leq x<0 \\\\ \n & \\text0.4 x+1,\\, \\, { if } \\, \\,\\, \\, 0\\leq x\\leq 1\n\\end{cases}"
Since the function coincides with the polynomials on the segments "[-1,0)" and "(0,1]" then the function is continuous on these segments.
"\\lim_{x\\rightarrow 0^{-}}f(x)= \\lim_{x\\rightarrow 0^{-}}(-2x+1)=1=f(0) =\\\\=\\lim_{x\\rightarrow 0^{+}}f(x)= \\lim_{x\\rightarrow 0^{+}}(0.4x+1 )=1 ."
Thus, "f" is continuous at the point "x=0" and on the segment "[-1,1]."
(i)
The left-hand derivative at "x=0" is
"f _{-}^{'}(0)=\\lim_{x\\rightarrow 0^{-}}\\frac{f(x)-f(1) }{x}=\\lim_{x\\rightarrow 0^{-}}\\frac{-2x+1-1 }{x}=-2" ,
the right-hand derivative at "x=0" is
"f _{+}^{'}(0)=\\lim_{x\\rightarrow 0^{+}}\\frac{f(x)-f(1) }{x}=\\lim_{x\\rightarrow 0^{+}}\\frac{0.4x+1-1 }{x}=0.4"
Since "f_{-}^{'}(0)\\neq f_{+}^{'}(0)" , then function is not differentiable at the point "x=0"
(ii) Because function "f" is continuous on the segment "[-1,1]" , then the function is integrable
on "[-1,1]." But this function is not monotonic on the segment "[-1,1]" , since in the interval "(-1,0)" the function decreases , and in the interval "(0,1)" the function increases .
Comments
Leave a comment