{F} test the series : infinity sigma n=1 (-1) ^n-1 sin nx/n√n for absolute and conditional convergence
"\\Sigma_{n=1}^{\\infty} \\dfrac{(-1)^{n-1}\\sin nx}{n\\sqrt n}\n\\\\=\\Sigma_{n=1}^{\\infty} \\dfrac{(-1)^{n-1}\\sin nx}{n^{3\/2}}"
Let "a_n=\\dfrac{(-1)^{n-1}\\sin nx}{n^{3\/2}}"
"\\Rightarrow a_{n+1}=\\dfrac{(-1)^{n}\\sin (n+1)x}{(n+1)^{3\/2}}"
Now, "p=\\lim_{n\\rightarrow \\infty}|\\dfrac{a_{n+1}}{a_n}|=\\lim_{n\\rightarrow \\infty}|\\dfrac{\\dfrac{(-1)^{n}\\sin (n+1)x}{(n+1)^{3\/2}}}{\\dfrac{(-1)^{n-1}\\sin nx}{n^{3\/2}}}|"
"=\\lim_{n\\rightarrow \\infty}|{\\dfrac{(-1)\\sin (n+1)x.n^{3\/2}}{(n+1)^{3\/2}\\sin nx}}|\n\\\\=\\lim_{n\\rightarrow \\infty}|{\\dfrac{\\sin (n+1)x}{(1+\\frac 1n)^{3\/2}\\sin nx}}|\n\\\\=\\lim_{n\\rightarrow \\infty}|{\\dfrac{1}{(1+\\frac 1n)^{3\/2}}}|\\times \\lim_{n\\rightarrow \\infty}|{\\dfrac{\\sin (n+1)x}{\\sin nx}}|\n\\\\=1\\times \\infty\n\\\\= \\infty"
So, "p>1"
Thus, the series is divergent by the ratio test.
Comments
Leave a comment