Answer to Question #297344 in Real Analysis for Tokyo

Question #297344

{F} test the series : infinity sigma n=1 (-1) ^n-1 sin nx/n√n for absolute and conditional convergence


1
Expert's answer
2022-02-14T16:22:22-0500

Solution:

"\\Sigma_{n=1}^{\\infty} \\dfrac{(-1)^{n-1}\\sin nx}{n\\sqrt n}\n\\\\=\\Sigma_{n=1}^{\\infty} \\dfrac{(-1)^{n-1}\\sin nx}{n^{3\/2}}"

Let "a_n=\\dfrac{(-1)^{n-1}\\sin nx}{n^{3\/2}}"

"\\Rightarrow a_{n+1}=\\dfrac{(-1)^{n}\\sin (n+1)x}{(n+1)^{3\/2}}"

Now, "p=\\lim_{n\\rightarrow \\infty}|\\dfrac{a_{n+1}}{a_n}|=\\lim_{n\\rightarrow \\infty}|\\dfrac{\\dfrac{(-1)^{n}\\sin (n+1)x}{(n+1)^{3\/2}}}{\\dfrac{(-1)^{n-1}\\sin nx}{n^{3\/2}}}|"

"=\\lim_{n\\rightarrow \\infty}|{\\dfrac{(-1)\\sin (n+1)x.n^{3\/2}}{(n+1)^{3\/2}\\sin nx}}|\n\\\\=\\lim_{n\\rightarrow \\infty}|{\\dfrac{\\sin (n+1)x}{(1+\\frac 1n)^{3\/2}\\sin nx}}|\n\\\\=\\lim_{n\\rightarrow \\infty}|{\\dfrac{1}{(1+\\frac 1n)^{3\/2}}}|\\times \\lim_{n\\rightarrow \\infty}|{\\dfrac{\\sin (n+1)x}{\\sin nx}}|\n\\\\=1\\times \\infty\n\\\\= \\infty"

So, "p>1"

Thus, the series is divergent by the ratio test.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS