Show that the series Σ x/(1+n^2.x^2) is uniformly convergent using Weierstrass m test
Since for each "n\\in N" and "x\\in \\left[ 1,\\alpha \\right]" , we have "1+{ n }^{ 2 }{ x }^{ 2 }\\ge { n }^{ 2 }\\ ,\\ x\\le \\alpha" ,then
"0\\le \\frac { x }{ 1+{ n }^{ 2 }{ x }^{ 2 } } \\le \\frac { \\alpha }{ { n }^{ 2 } }"
.
Setting "{ f }_{ n }(x)=\\frac { x }{ 1+{ n }^{ 2 }{ x }^{ 2 } } ,\\ { M }_{ n }=\\frac { \\alpha }{ { n }^{ 2 } }" we have for each "n\\in N" and "x\\in \\left[ 1,\\alpha \\right]" :
"\\left| { f }_{ n }(x) \\right| ={ f }_{ n }(x)\\le { M }_{ n }" . The series "\\sum _{ n=1 }^{ \\infty }{ { M }_{ n }\\ } =\\alpha \\sum _{ n=1 }^{ \\infty }{ \\frac { 1 }{ { n }^{ 2 } } }" converges, because the series
"\\sum _{ n=1 }^{ \\infty }{ \\frac { 1 }{ { n }^{ 2 } } }" is p-series (p=2). By the Weierstrass M-Test , the series
"\\sum _{ n=1 }^{ \\infty }{ { f }_{ n }(x)= } \\sum _{ n=1 }^{ \\infty }{ \\frac { x }{ 1+{ n }^{ 2 }{ x }^{ 2 } } }"
converges uniformly in "\\left[ 1,\\alpha \\right]" .
Comments
Leave a comment