1) Introduce slack variables x5,x6,x7, for the first, the second, and the third equation. then write the function in the form
Z=−Mx5−Mx6−Mx7→max, express the slack variables:
x5=15−x1−2x2−3x3x6=20−2x1−x2−5x3x7=10−x1−2x2−x3−x4 Substitute them to the function:
Z=4Mx1+5Mx2+9Mx3+Mx4−45M→max,After the first phase (common simplex-method with optimal solution) has ended at the following matrix:
015/725/715/70000−1−1/73/76/700000000−100000000−100000000−10 Express the basic variables:
x2=15/7+1/7x1,x3=25/7−3/7x1. Substitute them to the function:
Z=x1+2(15/7+1/7x1)+3(25/7−3/7x1)=15.
Finally we get the correct matrix after removing the rows with slack variables (Phase II):
015/725/715/715−1−1/73/76/70000000000000000
The two-phase simplex method gives:
x1=0x2=15/7x3=25/7Z=2•15/7+3•25/7+0•15/7=15.
Comments