Question #85977
Solve the following LPP by the two-phase simplex method:
Maximise Z=x_1+2x_2+3x_3
Subject to
x_1+2x_2+3x_3=15
2x_1+x_2+5x_3=20
x_1+2x_2+x_3+x_4=10
x_1,x_2,x_3,x_4≥0
1
Expert's answer
2019-03-08T08:14:02-0500

1) Introduce slack variables x5,x6,x7,x_5, x_6, x_7, for the first, the second, and the third equation. then write the function in the form

Z=Mx5Mx6Mx7max,Z = - Mx_5 - Mx_6 - Mx_7 → max ,

express the slack variables:


x5=15x12x23x3x_5 = 15-x_1-2x_2-3x_3x6=202x1x25x3x_6 = 20-2x_1-x_2-5x_3x7=10x12x2x3x4x_7 = 10-x_1-2x_2-x_3-x_4

Substitute them to the function:


Z=4Mx1+5Mx2+9Mx3+Mx445Mmax,Z= 4Mx_1+5Mx_2+9Mx_3+Mx_4-45M→ max ,

After the first phase (common simplex-method with optimal solution) has ended at the following matrix:


0100015/71/700025/73/700015/76/700000100000100000100000\begin{matrix} 0 & -1 & 0 & 0& 0 \\ 15/7 & -1/7 & 0 & 0& 0 \\ 25/7 & 3/7& 0 & 0 & 0 \\ 15/7 & 6/7 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 &0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{matrix}

Express the basic variables:


x2=15/7+1/7x1,x3=25/73/7x1.x_2 = 15/7+1/7x_1, \\ x_3 = 25/7-3/7x_1.

Substitute them to the function:


Z=x1+2(15/7+1/7x1)+3(25/73/7x1)=15.Z=x_1 + 2(15/7+1/7x_1) + 3(25/7-3/7x_1)=15.

Finally we get the correct matrix after removing the rows with slack variables (Phase II):


0100015/71/700025/73/700015/76/7000150000\begin{matrix} 0 & -1 & 0 & 0& 0 \\ 15/7 & -1/7 & 0 & 0& 0 \\ 25/7 & 3/7& 0 & 0 & 0 \\ 15/7 & 6/7 & 0 & 0 & 0\\ 15 & 0 & 0 & 0 &0 \end{matrix}


The two-phase simplex method gives:


x1=0x2=15/7x3=25/7Z=215/7+325/7+015/7=15.x_1 = 0 \\ x_2 = 15/7 \\ x_3 = 25/7 \\ Z = 2•15/7 + 3•25/7 + 0•15/7 = 15.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS