An aeroplane flies at a ground velocity (i.e. velocity relative to the ground) of 300 km/h N 30o W, in a wind blowing at a velocityof 50 km/h N 20o E. What is the velocity (speed and direction)of the plane relative to the ground? (Use a calculator and round the speed)
to the nearest km/h, and the corresponding angle to the nearest degree.)
"\\vec{v_w}=50\\cos(90\\degree-20\\degree)\\vec{i}+50\\sin(90\\degree-20\\degree)\\vec{j}"
"\\vec{v}=\\vec{v_p}+\\vec{v_w}=300\\cos(120\\degree)\\vec{i}+300\\sin(120\\degree)\\vec{j}"
"|\\vec{v}|^2=(300\\cos(120\\degree)+50\\cos(70\\degree))^2"
"+(300\\sin(120\\degree)+50\\sin(70\\degree))^2"
"\\approx111783.6283"
"|\\vec{v}|=\\sqrt{|\\vec{v}|^2}\\approx334\\ km\/h"
"\\approx-2.30846"
"\\theta=180\\degree+\\tan^{-1}(-2.30846)\\approx113\\degree"
"334\\ km\/h", N "23\\degree"W
Comments
Leave a comment