8.
x 1 = 3 x 2 x_1=3x_2 x 1 = 3 x 2 and x 3 = 7 x 4 x_3=7x_4 x 3 = 7 x 4
( 3 x 2 x 2 7 x 4 x 4 x 5 ) = x 2 ( 3 1 0 0 0 ) + x 4 ( 0 0 7 1 0 ) + x 5 ( 0 0 0 0 1 ) \begin{pmatrix}
3x_2 \\
x_2\\
7x_4\\
x_4\\
x_5
\end{pmatrix}=x_2\begin{pmatrix}
3 \\
1 \\
0\\
0\\
0
\end{pmatrix}+x_4\begin{pmatrix}
0\\
0 \\
7\\
1\\
0
\end{pmatrix}+x_5\begin{pmatrix}
0 \\
0\\
0\\
0\\
1
\end{pmatrix} ⎝ ⎛ 3 x 2 x 2 7 x 4 x 4 x 5 ⎠ ⎞ = x 2 ⎝ ⎛ 3 1 0 0 0 ⎠ ⎞ + x 4 ⎝ ⎛ 0 0 7 1 0 ⎠ ⎞ + x 5 ⎝ ⎛ 0 0 0 0 1 ⎠ ⎞
Basis of W is ( 3 , 1 , 0 , 0 , 0 ) , ( 0 , 0 , 7 , 1 , 0 ) , ( 0 , 0 , 0 , 0 , 1 ) (3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1) ( 3 , 1 , 0 , 0 , 0 ) , ( 0 , 0 , 7 , 1 , 0 ) , ( 0 , 0 , 0 , 0 , 1 )
9.
x 1 + x 2 − x 3 = 0..... ( i ) x 1 − x 3 = 0...... ( i i ) − 2 x 1 − x 2 + 2 x 3 = 0.... ( i i i ) − 2 x 1 + 2 x 3 = 0.... ( i v ) x_1+x_2-x_3=0.....(i)\\
x_1-x_3=0......(ii)\\
-2x_1-x_2+2x_3=0....(iii)\\
-2x_1+2x_3=0....(iv) x 1 + x 2 − x 3 = 0..... ( i ) x 1 − x 3 = 0...... ( ii ) − 2 x 1 − x 2 + 2 x 3 = 0.... ( iii ) − 2 x 1 + 2 x 3 = 0.... ( i v )
− 2 ( i i ) = ( i v ) , -2(ii)=(iv), − 2 ( ii ) = ( i v ) , therefore ignoring ( i v ) (iv) ( i v )
( 1 1 − 1 1 0 − 1 − 2 − 1 2 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}
1&&1&&-1 \\
1&&0&&-1\\
-2&&-1&&2
\end{pmatrix}\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}=\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} ⎝ ⎛ 1 1 − 2 1 0 − 1 − 1 − 1 2 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞
⟹ ( 1 0 − 1 0 1 0 0 0 0 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \implies\begin{pmatrix}
1&&0&&-1 \\
0&&1&&0\\
0&&0&&0
\end{pmatrix}\begin{pmatrix}
x_1 \\
x_2\\
x_3
\end{pmatrix}=\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} ⟹ ⎝ ⎛ 1 0 0 0 1 0 − 1 0 0 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞
x 1 = x 3 x 2 = 0 x_1=x_3\\
x_2=0 x 1 = x 3 x 2 = 0
( x 1 0 x 1 ) = x 1 ( 1 0 1 ) \begin{pmatrix}
x_1 \\
0 \\
x_1
\end{pmatrix}=x_1\begin{pmatrix}
1 \\
0\\
1
\end{pmatrix} ⎝ ⎛ x 1 0 x 1 ⎠ ⎞ = x 1 ⎝ ⎛ 1 0 1 ⎠ ⎞
Basis is [ 1 , 0 , 1 ] [1,0,1] [ 1 , 0 , 1 ]
10.
( 1 0 2 − 3 2 0 4 − 6 − 3 0 − 6 9 ) \begin{pmatrix}
1&&0&&2&& -3 \\
2&&0&&4&&-6 \\
-3&&0&&-6&&9
\end{pmatrix} ⎝ ⎛ 1 2 − 3 0 0 0 2 4 − 6 − 3 − 6 9 ⎠ ⎞
1 2 R 2 → R 2 \frac{1}{2}R_2\to\>R_2 2 1 R 2 → R 2
− 1 3 R 3 → R 3 \frac{-1}{3}R_3\to\>R_3 3 − 1 R 3 → R 3
( 1 0 2 − 3 1 0 2 − 3 1 0 2 − 3 ) \begin{pmatrix}
1&&0&& 2&&-3 \\
1&&0&&2& & -3\\
1&&0&&2&&-3
\end{pmatrix} ⎝ ⎛ 1 1 1 0 0 0 2 2 2 − 3 − 3 − 3 ⎠ ⎞
R 2 − R 1 → R 2 R 3 − R 1 → R 3 R_2-R_1\to\>R_2\\
R_3-R_1\to\>R_3 R 2 − R 1 → R 2 R 3 − R 1 → R 3
( 1 0 2 − 3 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
1&&0&&2&&-3 \\
0&&0& & 0&&0\\
0&&0&&0&&0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 2 0 0 − 3 0 0 ⎠ ⎞
Rank = 1 =1 = 1
Nullity = 3 =3 = 3
Comments