T : F 3 → F 3 ( x 1 , x 2 , x 3 ) → ( x 1 − x 2 + 2 x 3 , 2 x 1 + x 2 , − x 1 − 2 x 2 + 2 x 3 ) T:F_3\rightarrow F_3\\
(x_1,x_2,x_3)\rightarrow (x_1 − x_2 + 2x_3 ,2x_1 + x_2 , − x_1 − 2 x_2 + 2x_3 ) T : F 3 → F 3 ( x 1 , x 2 , x 3 ) → ( x 1 − x 2 + 2 x 3 , 2 x 1 + x 2 , − x 1 − 2 x 2 + 2 x 3 )
= [ 1 − 1 2 2 1 0 − 1 − 2 2 ] × [ x 1 x 2 x 3 ] = A X [ l e t ] =\begin{bmatrix}1&-1&2\\2&1&0\\-1&-2&2\end{bmatrix}\times\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=AX \;[let] = ⎣ ⎡ 1 2 − 1 − 1 1 − 2 2 0 2 ⎦ ⎤ × ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = A X [ l e t ]
where A = [ 1 − 1 2 2 1 0 − 1 − 2 2 ] , X = [ x 1 x 2 x 3 ] A=\begin{bmatrix}1&-1&2\\2&1&0\\-1&-2&2\end{bmatrix},X=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} A = ⎣ ⎡ 1 2 − 1 − 1 1 − 2 2 0 2 ⎦ ⎤ , X = ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤
i.e. T ( X ) = A X T(X)=AX T ( X ) = A X
(i)
Let X , Y ∈ F 3 , c ∈ C X,Y\in F_3, c\in \mathbb{C} X , Y ∈ F 3 , c ∈ C
∴ T ( a X + Y ) = A ( a X + Y ) = a A X + A Y = a T ( X ) + T ( Y ) \therefore T(aX+Y)=A(aX+Y)=aAX+AY=aT(X)+T(Y) ∴ T ( a X + Y ) = A ( a X + Y ) = a A X + A Y = a T ( X ) + T ( Y )
Hence T T T is a linear transformation.
(ii)
Claim:- { A 1 = [ 1 2 − 1 ] , A 2 = [ − 1 1 − 2 ] } \{A_1=\begin{bmatrix}1\\2\\-1\end{bmatrix},A_2=\begin{bmatrix}-1\\1\\-2\end{bmatrix}\} { A 1 = ⎣ ⎡ 1 2 − 1 ⎦ ⎤ , A 2 = ⎣ ⎡ − 1 1 − 2 ⎦ ⎤ } is a Basis of I m ( T ) Im(T) I m ( T ) .
Proof:-
Any element of I m ( T ) Im(T) I m ( T ) can be expressed by columns of A i . e . A 1 , A 2 , A 3 A \;\;i.e. \;A_1, A_2,A_3 A i . e . A 1 , A 2 , A 3
∴ I m ( T ) = s p a n ( { A 1 , A 2 , A 3 } ) \therefore Im(T)=span(\{A_1, A_2,A_3\}) ∴ I m ( T ) = s p an ({ A 1 , A 2 , A 3 })
A 3 = 2 3 A 1 − 4 3 A 2 A_3=\frac{2}{3}A_1-\frac{4}{3}A_2 A 3 = 3 2 A 1 − 3 4 A 2
∴ A 3 ∈ s p a n ( { A 1 , A 2 } ) \therefore A_3\in span(\{A_1,A_2\}) ∴ A 3 ∈ s p an ({ A 1 , A 2 })
⇒ s p a n ( { A 1 , A 2 } ) = s p a n ( { A 1 , A 2 , A 3 } ) = I m ( T ) \Rightarrow span(\{A_1,A_2\})= span(\{A_1,A_2,A_3\})=Im(T) ⇒ s p an ({ A 1 , A 2 }) = s p an ({ A 1 , A 2 , A 3 }) = I m ( T ) ...(1)
Now A 1 , A 2 A_1,A_2 A 1 , A 2 are independent [ as ∃ n o c ∈ C ∋ A 1 = c A 2 \exists no\;c\in \mathbb{C}\ni A_1=cA_2 ∃ n o c ∈ C ∋ A 1 = c A 2 ] ...(2)
So, from above two facts, we can conclude that ,
{ [ 1 2 − 1 ] , [ − 1 1 − 2 ] } \{\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}-1\\1\\-2\end{bmatrix}\} { ⎣ ⎡ 1 2 − 1 ⎦ ⎤ , ⎣ ⎡ − 1 1 − 2 ⎦ ⎤ } is a Basis of I m ( T ) Im(T) I m ( T ) ...(Proved)
Therefore r a n k ( T ) = d i m ( I m ( T ) ) = 2 \pmb{rank(T)=dim(Im(T))=2} r ank ( T ) = d im ( I m ( T )) = 2 r ank ( T ) = d im ( I m ( T )) = 2
(iii)
Null Space of T = N u l l ( T ) = { X ∈ F 3 ∣ A X = 0 } \;T=Null(T)=\{X\in F_3 | AX=0\} T = N u ll ( T ) = { X ∈ F 3 ∣ A X = 0 }
So,
A X = 0 ⇒ [ 1 − 1 2 2 1 0 − 1 − 2 2 ] [ x 1 x 2 x 3 ] = 0 ⇒ [ 1 0 2 / 3 0 1 − 4 / 3 0 0 0 ] [ x 1 x 2 x 3 ] = 0 ⇒ x 1 + 2 x 3 3 = 0 , x 2 − 4 x 3 3 = 0 \;\;\;\;\;AX=0\\
\Rightarrow \begin{bmatrix}1&-1&2\\2&1&0\\-1&-2&2\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0\\
\Rightarrow \begin{bmatrix}1&0&2/3\\0&1&-4/3\\0&0&0\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0\\
\Rightarrow x_1+\frac{2x_3}{3}=0, \;x_2-\frac{4x_3}{3}=0 A X = 0 ⇒ ⎣ ⎡ 1 2 − 1 − 1 1 − 2 2 0 2 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = 0 ⇒ ⎣ ⎡ 1 0 0 0 1 0 2/3 − 4/3 0 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = 0 ⇒ x 1 + 3 2 x 3 = 0 , x 2 − 3 4 x 3 = 0
[let x 3 = k x_3=k x 3 = k ]
⇒ X ∈ { k [ − 2 / 3 4 / 3 1 ] : k ∈ C } \Rightarrow X\in\{k\begin{bmatrix}-2/3\\4/3\\1\end{bmatrix}: k\in \mathbb{C}\} ⇒ X ∈ { k ⎣ ⎡ − 2/3 4/3 1 ⎦ ⎤ : k ∈ C }
∴ N u l l ( T ) = { k [ − 2 / 3 4 / 3 1 ] : k ∈ C } \therefore Null(T)=\{k\begin{bmatrix}-2/3\\4/3\\1\end{bmatrix}: k\in \mathbb{C}\} ∴ N u ll ( T ) = { k ⎣ ⎡ − 2/3 4/3 1 ⎦ ⎤ : k ∈ C }
Clearly Null(T) is generated by 1 element.
Hence, N u l l i t y o f T = d i m ( N u l l ( T ) ) = 1 \pmb{Nullity\;\;of \;\;T=dim(Null(T))=1} N u ll i t y o f T = d im ( N u ll ( T )) = 1 N u ll i t y o f T = d im ( N u ll ( T )) = 1 .
Comments