(a) Let α : R
3 −→ R
3 be a linear transformation satisfying
α(1, 1, 0) = (1, 2, −1), α(1, 0, −1) = (0, 1, 1) and α(0, −1, 1) = (3, 3, 3).
i. Express (1, 0, 0) as a linear combination of (1, 2, −1), (0, 1, 1) and (3, 3, 3).
ii. Hence find v ∈ R
3
such that α(v) = (1, 0, 0).
(b) Let the map β : R
3 −→ R
3 be defined by
β((a, b, c)) = (a + b + c, −a − c, b)
for any (a, b, c) ∈ R
3
.
i. Show that β is a linear transformation.
ii. Find the kernel of β.
1
Expert's answer
2020-06-25T18:40:05-0400
(a) i.
(1,0,0)=c1(1,2,−1)+c2(0,1,1)+c3(3,3,3)
c1+3c3=12c1+c2+3c3=0−c1+c2+3c3=0
c1+3c3=13c1=0−c1+c2+3c3=0
c1=0c2=−1c3=31
(1,0,0)=(0)(1,2,−1)+(−1)(0,1,1)+(31)(3,3,3)
ii.
v=(0)(1,1,0)+(−1)(1,0,−1)+(31)(0,−1,1)
v=(−1,−31,34)
(b) i.
β((a,b,c))=(a+b+c,−a−c,b)
Let x=(a1,b1,c1),y=(a2,b2,c2),a1,b1,c1,a2,b2,c2∈R
System of linear equations associated to the implicit equations of the kernel, resulting from equalling to zero the components of the linear transformation formula.
Comments