2020-05-26T17:46:13-04:00
13. A and X are the matrices
a b
c d !
and
x y
u v !
respectively, where b is not equal
to zero. Prove that if AX = XA then u = cy/b and v = x + (d − a)y/b. Hence prove
that if AX = XA then there are numbers p and q such that X = pA + qI, and find
p and q in terms of a, b, x, y.
1
2020-05-27T18:44:17-0400
A = ( a b c d ) , X = ( x y u v ) A=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix},X=\begin{pmatrix}
x & y\\
u & v
\end{pmatrix} A = ( a c b d ) , X = ( x u y v )
A X = ( a b c d ) ( x y u v ) = ( a x + b u a y + b v c x + d u c y + d v ) AX=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}\begin{pmatrix}
x & y\\
u & v
\end{pmatrix}=\begin{pmatrix}
ax+bu & ay+bv\\
cx+du & cy+dv
\end{pmatrix} A X = ( a c b d ) ( x u y v ) = ( a x + b u c x + d u a y + b v cy + d v )
X A = ( x y u v ) ( a b c d ) = ( a x + c y b x + d y a u + c v b u + d v ) XA=\begin{pmatrix}
x & y\\
u & v
\end{pmatrix}\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}=\begin{pmatrix}
ax+cy & bx+dy\\
au+cv & bu+dv
\end{pmatrix} X A = ( x u y v ) ( a c b d ) = ( a x + cy a u + c v b x + d y b u + d v )
A X = X A = > AX=XA=> A X = X A => ( a x + b u a y + b v c x + d u c y + d v ) = ( a x + c y b x + d y a u + c v b u + d v ) \begin{pmatrix}
ax+bu & ay+bv\\
cx+du & cy+dv
\end{pmatrix}=\begin{pmatrix}
ax+cy & bx+dy\\
au+cv & bu+dv
\end{pmatrix} ( a x + b u c x + d u a y + b v cy + d v ) = ( a x + cy a u + c v b x + d y b u + d v )
a x + b u = a x + c y a y + b v = b x + d y c x + d u = a u + c v c y + d v = b u + d v \begin{matrix}
ax+bu=ax+cy \\
ay+bv=bx+dy \\
cx+du=au+cv \\
cy+dv=bu+dv
\end{matrix} a x + b u = a x + cy a y + b v = b x + d y c x + d u = a u + c v cy + d v = b u + d v Then
b u = c y = > u = c y b , b ≠ 0 bu=cy=>u={cy\over b},b\not=0 b u = cy => u = b cy , b = 0 b v = b x + ( d − a ) y = > v = x + d − a b y , b ≠ 0 bv=bx+(d-a)y=>v=x+{d-a\over b}y,b\not=0 b v = b x + ( d − a ) y => v = x + b d − a y , b = 0
X = p A + q I X=pA+qI X = p A + q I X = ( x y u v ) = ( x y c y b x + d − a b y ) = X=\begin{pmatrix}
x & y\\
u & v
\end{pmatrix}=\begin{pmatrix}
x & y\\
{cy \over b} &x+ {d-a \over b}y
\end{pmatrix}= X = ( x u y v ) = ( x b cy y x + b d − a y ) =
= p ( a b c d ) + q ( 1 0 0 1 ) =p\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}+q\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} = p ( a c b d ) + q ( 1 0 0 1 )
p a + q = x p b = y p c = c y b p d + q = x + d − a b y \begin{matrix}
pa+q=x \\
pb=y \\
pc={cy \over b} \\
pd+q=x+{d-a \over b}y
\end{matrix} p a + q = x p b = y p c = b cy p d + q = x + b d − a y
p = y b p={y \over b} p = b y q = x − a b y q=x-{a \over b}y q = x − b a y
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments