Question #106635
Find the dual basis for the basis {1,1+x,x²-1} of the vector space P3={a0+a1x+a2x²:a0,a1,a2 belongs to R}
1
Expert's answer
2020-03-31T08:39:35-0400

The given vector space is ,

P3={a0+a1x+a2x2:a0,a1,a2R}P_3=\{ a_0+a_1x+a_2x^2:a_0,a_1,a_2\in \R\} and the given basis is

{1,1+x,x21}\{ 1,1+x,x^2-1\} .

We known that ,if B={v1,v2,......,vn}B=\{ v_1,v_2,......,v_n\} is a basis of VV over KK and

ϕ1,ϕ2,......,ϕnV\phi_1,\phi_2,......,\phi_n \in V^* be the linear functionals as defined by


ϕi(vj)={1  if i=j 0  if ij\phi_i(v_j)=\begin{cases} 1 \ \ if \ i=j \ \\ 0 \ \ if \ i\neq j \end{cases}


Then {ϕ1,.......ϕn}\{ \phi_1,.......\phi_n\} is a basis of VV^* called the dual basis of BB .

According to question,

Let B={v1=1,v2=1+x,v3=x21}B=\{v_1=1,v_2=1+x,v_3=x^2-1\} be a basis of P3P_3 .

Now ,any elements of P2P_2 is written as linear combination of elements of BB .

If a0+a1x+a2x2P2a_0+a_1x+a_2x^2 \in P_2 be any arbitrary element then

a0+a1x+a2x2=(a0a1+a2).1+a1(1+x)+a2(x21)a_0+a_1x+a_2x^2=(a_0-a_1+a_2).1+a_1(1+x)+a_2(x^2-1)

     a0+a1x+a2x2=(a0a1+a2)v1+a1v2+a2v3\implies \ a_0+a_1x+a_2x^2=(a_0-a_1+a_2)v_1+a_1v_2+a_2v_3

Again, we known that if U and VU \ and \ V are two vector space over a field KK and {v1,.........,vn}\{ v_1,.........,v_n \} be a basis of V and let u1,.......,unV \ and \ let \ u_1,.......,u_n be any vector in UU .Then there exist a unique linear mapping F:VU such that F(v1)=u1,..................,F(vn)=unF:V \rightarrow U \ such \ that \ F(v_1)=u_1,..................,F(v_n)=u_n

Then ,we can define linear functional as follows,


ϕ1:P2R\phi_1:P_2\rightarrow \R defined by ϕ1(vi)={1 if i=1 0 if i1\phi_1(v_i)=\begin{cases} 1 \ if \ i=1 \ \\ 0 \ if \ i\neq 1 \\ \end{cases}


Since,a0+a1x+a2x2=(a0a1+a2)v1+a1v2+a2v2a_0+a_1x+a_2x^2=(a_0-a_1+a_2)v_1+a_1v_2+a_2v_2

ϕ1(a0+a1x+a2x2)=ϕ1{(a0a1+a2)v1+a1v2+a2v3}\phi_1(a_0+a_1x+a_2x^2)=\phi_1\{(a_0-a_1+a_2)v_1+a_1v_2+a_2v _3\}

=(a0a1+a2)ϕ1(v1)+a1ϕ1(v2)+a2ϕ1(v3)=(a_0-a_1+a_2)\phi_1(v_1)+a_1\phi_1(v_2)+a_2\phi_1(v_3)

( Since ϕ1\phi_1 is a linear mapping)

i,e, ϕ1(a0+a1x+a2x2)=a0a1+a2\phi_1(a_0+a_1x+a_2x^2)=a_0-a_1+a_2

similarly, ϕ2:P2R\phi_2:P_2\rightarrow\R defined by

ϕ2(vi)=:{1 if i=20 if i2\phi_2(v_i)=:\begin{cases} 1 \ if \ i=2 \\ 0 \ if \ i\neq 2 \\ \end{cases}

I,e ϕ2(a0+a1x+a2x2)=a1\phi_2(a_0+a_1x+a_2x^2)=a_1

And ϕ3:P2:R\phi_3:P_2:\rightarrow\R defined by ϕ3(vi)={1 if i=30 if i3\phi_3(v_i)=\begin{cases} 1 \ if \ i=3 \\ 0 \ if \ i\neq3 \\ \end{cases}

I,e ϕ3(a0+a1x+a3x3)=a3\phi_3(a_0+a_1x+a_3x^3)=a_3 .

Therefore {ϕ1,ϕ2,ϕ3}\{\phi_1,\phi_2,\phi_3\} is the required dual of Basis BBasis \ B .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS