d x d t = 2 x − 4 y \dfrac{dx}{dt}=2x-4y d t d x = 2 x − 4 y d y d t = 2 x + 4 y \dfrac{dy}{dt}=2x+4y d t d y = 2 x + 4 y
D x − 2 x + 4 y = 0 Dx-2x+4y=0 D x − 2 x + 4 y = 0 D y − 2 x − 4 y = 0 Dy-2x-4y=0 Dy − 2 x − 4 y = 0
( D − 2 ) x + 4 y = 0 (D-2)x+4y=0 ( D − 2 ) x + 4 y = 0 − 2 x + ( D − 4 ) y = 0 -2x+(D-4)y=0 − 2 x + ( D − 4 ) y = 0 Multiply first equation by 2 2 2 and second equarion by D − 2 D-2 D − 2
2 ( D − 2 ) x + 8 y = 0 2(D-2)x+8y=0 2 ( D − 2 ) x + 8 y = 0 − 2 ( D − 2 ) x + ( D − 2 ) ( D − 4 ) y = 0 -2(D-2)x+(D-2)(D-4)y=0 − 2 ( D − 2 ) x + ( D − 2 ) ( D − 4 ) y = 0 Add two equations
− 2 ( D − 2 ) x + ( D − 2 ) ( D − 4 ) y -2(D-2)x+(D-2)(D-4)y − 2 ( D − 2 ) x + ( D − 2 ) ( D − 4 ) y
+ ( − 2 ( D − 2 ) x + ( D − 2 ) ( D − 4 ) y ) = 0 +(-2(D-2)x+(D-2)(D-4)y)=0 + ( − 2 ( D − 2 ) x + ( D − 2 ) ( D − 4 ) y ) = 0 Simplify
D 2 − 6 D + 16 y = 0 D^2-6D+16y=0 D 2 − 6 D + 16 y = 0 Auxiliary equation
r 2 − 6 r + 16 = 0 r^2-6r+16=0 r 2 − 6 r + 16 = 0
r = 3 ± i 7 r=3\pm i\sqrt{7} r = 3 ± i 7
y ( t ) = c 1 e 3 t cos ( 7 t ) + c 2 e 3 t sin ( 7 t ) y(t)=c_1e^{3t}\cos(\sqrt{7}t)+c_2e^{3t}\sin(\sqrt{7}t) y ( t ) = c 1 e 3 t cos ( 7 t ) + c 2 e 3 t sin ( 7 t ) Then
d y d t = 3 c 1 e 3 t cos ( 7 t ) + 3 c 2 e 3 t sin ( 7 t ) \dfrac{dy}{dt}=3c_1e^{3t}\cos(\sqrt{7}t)+3c_2e^{3t}\sin(\sqrt{7}t) d t d y = 3 c 1 e 3 t cos ( 7 t ) + 3 c 2 e 3 t sin ( 7 t )
− 7 c 1 e 3 t sin ( 7 t ) + 7 c 2 e 3 t cos ( 7 t ) -\sqrt{7}c_1e^{3t}\sin(\sqrt{7}t)+\sqrt{7}c_2e^{3t}\cos(\sqrt{7}t) − 7 c 1 e 3 t sin ( 7 t ) + 7 c 2 e 3 t cos ( 7 t ) Substitute
d y d t = 2 x + 4 y \dfrac{dy}{dt}=2x+4y d t d y = 2 x + 4 y
x = − 2 y + 1 2 d y d t x=-2y+\dfrac{1}{2}\dfrac{dy}{dt} x = − 2 y + 2 1 d t d y
x = − 2 c 1 e 3 t cos ( 7 t ) − 2 c 2 e 3 t sin ( 7 t ) x=-2c_1e^{3t}\cos(\sqrt{7}t)-2c_2e^{3t}\sin(\sqrt{7}t) x = − 2 c 1 e 3 t cos ( 7 t ) − 2 c 2 e 3 t sin ( 7 t )
+ 3 2 c 1 e 3 t cos ( 7 t ) + 3 2 c 2 e 3 t sin ( 7 t ) +\dfrac{3}{2}c_1e^{3t}\cos(\sqrt{7}t)+\dfrac{3}{2}c_2e^{3t}\sin(\sqrt{7}t) + 2 3 c 1 e 3 t cos ( 7 t ) + 2 3 c 2 e 3 t sin ( 7 t )
− 7 2 c 1 e 3 t sin ( 7 t ) + 7 2 c 2 e 3 t cos ( 7 t ) -\dfrac{\sqrt{7}}{2}c_1e^{3t}\sin(\sqrt{7}t)+\dfrac{\sqrt{7}}{2}c_2e^{3t}\cos(\sqrt{7}t) − 2 7 c 1 e 3 t sin ( 7 t ) + 2 7 c 2 e 3 t cos ( 7 t )
x ( t ) = ( − 1 2 c 1 + 7 2 c 2 ) e 3 t cos ( 7 t ) x(t)=(-\dfrac{1}{2}c_1+\dfrac{\sqrt{7}}{2}c_2)e^{3t}\cos(\sqrt{7}t) x ( t ) = ( − 2 1 c 1 + 2 7 c 2 ) e 3 t cos ( 7 t )
+ ( − 1 2 c 2 − 7 2 c 1 ) e 3 t sin ( 7 t ) +(-\dfrac{1}{2}c_2-\dfrac{\sqrt{7}}{2}c_1)e^{3t}\sin(\sqrt{7}t) + ( − 2 1 c 2 − 2 7 c 1 ) e 3 t sin ( 7 t )
y ( t ) = c 1 e 3 t cos ( 7 t ) + c 2 e 3 t sin ( 7 t ) y(t)=c_1e^{3t}\cos(\sqrt{7}t)+c_2e^{3t}\sin(\sqrt{7}t) y ( t ) = c 1 e 3 t cos ( 7 t ) + c 2 e 3 t sin ( 7 t )
Comments