Solution;
Given;
D 4 + D ′ 4 = 0 D^4+D'^4=0 D 4 + D ′4 = 0
The auxiliary equation is;
m 4 + 1 = 0 m^4+1=0 m 4 + 1 = 0
m 4 = − 1 = e i π m^4=-1=e^{iπ} m 4 = − 1 = e iπ (By Euler's formula)
By De Moivres theorem;
m 4 = e i π + 2 n π m^4=e^{iπ+2nπ} m 4 = e iπ + 2 nπ
m = e i π ( 2 n + 1 4 ) m=e^{iπ(\frac{2n+1}{4})} m = e iπ ( 4 2 n + 1 ) In which n=0,1,2,3....
When;
n=0;
m = e i π 4 = c o s π 4 + i s i n π 4 = 1 2 + i 1 2 m=e^{i\fracπ4}=cos\fracπ4+isin\fracπ4=\frac{1}{\sqrt2}+i\frac{1}{\sqrt2} m = e i 4 π = cos 4 π + i s in 4 π = 2 1 + i 2 1
n=1;
m = e i ( 3 π 4 ) = c o s 3 π 4 + i s i n 3 π 4 = − 1 2 + i 1 2 m=e^{i(\frac{3π}{4})}=cos\frac{3π}{4}+isin\frac{3π}{4}=\frac{-1}{\sqrt2}+i\frac{1}{\sqrt2} m = e i ( 4 3 π ) = cos 4 3 π + i s in 4 3 π = 2 − 1 + i 2 1
n=2;
m = e i ( 5 π 4 ) = c o s 5 π 4 + i s i n 5 π 4 = − 1 2 − i 1 2 m=e^{i(\frac{5π}{4})}=cos\frac{5π}{4}+i sin\frac{5π}{4}=\frac{-1}{\sqrt2}-i\frac{1}{\sqrt2} m = e i ( 4 5 π ) = cos 4 5 π + i s in 4 5 π = 2 − 1 − i 2 1
n=3;
m = e i ( 7 π 4 ) = c o s 7 π 4 + i s i n 7 π 4 = 1 2 − i 1 2 m=e^{i (\frac{7π}{4})}=cos\frac{7π}{4}+i sin\frac{7π}{4}=\frac{1}{\sqrt2}-i\frac{1}{\sqrt2} m = e i ( 4 7 π ) = cos 4 7 π + i s in 4 7 π = 2 1 − i 2 1
Therefore,you can see that the roots are;
m = 1 2 − + i 1 2 m=\frac{1}{\sqrt2}_-^+i\frac{1}{\sqrt2} m = 2 1 − + i 2 1 and − 1 2 − + 1 2 -\frac{1}{\sqrt2}_-^+\frac{1}{\sqrt2} − 2 1 − + 2 1
Therefore,the complementary solution is;
C . F = e 1 2 x [ c 1 c o s 1 2 x + c 2 s i n 1 2 x ] + e − 1 2 [ c 3 c o s 1 2 x + c 4 s i n 1 2 x ] C.F=e^{\frac{1}{\sqrt2}x}[c_1cos\frac{1}{\sqrt2}x+c_2sin\frac{1}{\sqrt2}x]+e^{\frac{-1}{\sqrt2}}[c_3cos\frac{1}{\sqrt2}x+c_4sin\frac{1}{\sqrt2}x] C . F = e 2 1 x [ c 1 cos 2 1 x + c 2 s in 2 1 x ] + e 2 − 1 [ c 3 cos 2 1 x + c 4 s in 2 1 x ]
Comments