Solve the linear partial differential equation (D⁴+D'⁴)=0
Solution;
Given;
"D^4+D'^4=0"
The auxiliary equation is;
"m^4+1=0"
"m^4=-1=e^{i\u03c0}" (By Euler's formula)
By De Moivres theorem;
"m^4=e^{i\u03c0+2n\u03c0}"
"m=e^{i\u03c0(\\frac{2n+1}{4})}" In which n=0,1,2,3....
When;
n=0;
"m=e^{i\\frac\u03c04}=cos\\frac\u03c04+isin\\frac\u03c04=\\frac{1}{\\sqrt2}+i\\frac{1}{\\sqrt2}"
n=1;
"m=e^{i(\\frac{3\u03c0}{4})}=cos\\frac{3\u03c0}{4}+isin\\frac{3\u03c0}{4}=\\frac{-1}{\\sqrt2}+i\\frac{1}{\\sqrt2}"
n=2;
"m=e^{i(\\frac{5\u03c0}{4})}=cos\\frac{5\u03c0}{4}+i sin\\frac{5\u03c0}{4}=\\frac{-1}{\\sqrt2}-i\\frac{1}{\\sqrt2}"
n=3;
"m=e^{i (\\frac{7\u03c0}{4})}=cos\\frac{7\u03c0}{4}+i sin\\frac{7\u03c0}{4}=\\frac{1}{\\sqrt2}-i\\frac{1}{\\sqrt2}"
Therefore,you can see that the roots are;
"m=\\frac{1}{\\sqrt2}_-^+i\\frac{1}{\\sqrt2}" and "-\\frac{1}{\\sqrt2}_-^+\\frac{1}{\\sqrt2}"
Therefore,the complementary solution is;
"C.F=e^{\\frac{1}{\\sqrt2}x}[c_1cos\\frac{1}{\\sqrt2}x+c_2sin\\frac{1}{\\sqrt2}x]+e^{\\frac{-1}{\\sqrt2}}[c_3cos\\frac{1}{\\sqrt2}x+c_4sin\\frac{1}{\\sqrt2}x]"
Comments
Leave a comment