Obtain the differential equation by eliminating arbitrary constant.
A ln y = Be^x²
Alny=Bex2...(1)A ln y = Be^{x^2} ...(1)\\Alny=Bex2...(1)
Differentiating both sides w.r.t xxx , we get
Ay.y′=2xBex2Ay.y′=2x.Alny [From eqn. (1)]y′=2xy.lnyy′−2xy.lny=0\frac{A}{y}.y'=2xBe^{x^2}\\ \frac{A}{y}.y'=2x.A ln y\ [\text{From eqn. (1)}]\\ y'=2xy.lny\\ y'-2xy.lny=0yA.y′=2xBex2yA.y′=2x.Alny [From eqn. (1)]y′=2xy.lnyy′−2xy.lny=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments