Solve the following B.V.P.
π’π‘π‘ = π 2π’π₯π₯; { π’(π₯, 0) = cos π₯ β 1, π’π‘ (π₯, 0) = 0 π’(0,π‘) = 0, π’(2π,π‘) = 0 0 β€ π₯ β€ 2οΏ½
Given
"U_{tt}=2c\\space U{xx}\\\\\\frac{\\delta ^2U}{\\delta x^2}=\\frac{1}{2c}\\frac{\\delta ^2 u}{\\delta t^2}\\\\U(x,0)=f(x)=cos \\space x-1\\\\U(x,0)=g(x)=0\\\\and\\\\U(0,t)=0,U(2\\pi,t)=0\\\\0\n\u2264 X \u2264 2"
We know that
"U(x,t)=\\frac{1}{2}[f(x+ct)-f(x-ct)]+\\frac{1}{2c}\\int^{x+ct}_{x-ct}g(s)ds"
"U(x,t)=\\frac{1}{2}[cos(x+\\sqrt{2ct})-1-cos (x-\\sqrt{2ct})+1]+\\frac{1}{2\\sqrt{2c}}\\int ^{x+\\sqrt{2ct}}_{x-\\sqrt{2ct}}0\\space ds"
"U(x,t)=\\frac{1}{2}[cos(x+\\sqrt{2ct})-cos (x-\\sqrt{2ct})+1]"
and
"U(0,t)=0\\\\and\\\\U(2\\pi,t)=0\\\\0=0"
we know that "cos\\theta=cos \\theta"
since verified
and "U(2\\pi,t)=0"
"0=\\frac{1}{2}[cos(2\\pi+\\sqrt{2ct})-cos(2\\pi-\\sqrt{2ct})]\\\\=\\frac{1}{2}[cos(\\sqrt{2ct})-cos(-\\sqrt{2ct})]\\\\0=0"
verified
hence solution is
"U(x,t)=\\frac{1}{2}[cos(x+\\sqrt{2ct})-cos (x-\\sqrt{2ct})]"
Comments
Leave a comment