(Variable Separable). Determine the solution of the differential equation.
a.) "\\alpha" d"\\beta" + "\\beta"d"\\alpha" + "\\alpha""\\beta"(3d"\\alpha" + d"\\beta") =0
b.) (xy + x)dx = (x2y2 + x2 + y2 +1)dy
c.) dx = t(1 + t2) sec2x dt
a)
"\\dfrac{1+\\beta}{\\beta}d\\beta=-\\dfrac{1+3\\alpha}{\\alpha}d\\alpha"
Integrate
"\\ln(|\\beta|)+\\beta=-\\ln(|\\alpha|)-3\\alpha+\\ln C"
"\\beta e^{\\beta}=\\dfrac{C}{\\alpha e^{3\\alpha}}"
"\\alpha \\beta e^{3\\alpha+\\beta}=C"
b)
"\\dfrac{y^2+1}{y+1}dy=\\dfrac{x}{x^2+1}dx"
Integrate
"\\int\\dfrac{y^2+1}{y+1}dy=\\int\\dfrac{y^2+2y+1-2y-2+2}{y+1}dy"
"=\\int(y+1)dy-2\\int dy+2\\int \\dfrac{dy}{y+1}"
"=\\dfrac{y^2}{2}+y-2y+2\\ln(|y|)+C_1"
"\\dfrac{y^2}{2}-y+2\\ln(|y|)=\\dfrac{1}{2}\\ln(x^2+1)+\\ln C"
c)
Integrate
"\\dfrac{1}{2}\\int(1+\\cos(2x))dx=\\int(t+t^3)dt"
"\\dfrac{1}{2}x+\\dfrac{1}{4}\\sin(2x)=\\dfrac{t^2}{2}+\\dfrac{t^4}{4}+C"
Comments
Leave a comment