Find the series solution of the differential equation
x2(π₯+2)π¦β²β²βπ₯π¦β²+(1+π₯)π¦=0.
Given
"x^{2}(x+2)y''-xy'+(1+x)y=0" this is equation (i)
Let "y=\\displaystyle\\sum_{n=0}^{\\infty}C_nx^n"
Then "y'=\\displaystyle\\sum_{n=1}^{\\infty}C_nnx^{n-1}"
And "y''=\\displaystyle\\sum_{n=2}^{\\infty}C_nn(n-1)x^{n-2}"
Substituting the above into our equation (i)
"x^{2}(x+1)\\displaystyle\\sum_{n=2}^{\\infty}C_nn(n-1)x^{n-2}-x\\displaystyle\\sum_{n=1}^{\\infty}C_nnx^{n-1}"
"+(1+x)\\displaystyle\\sum_{x=0}^{\\infty}C_nx^n=0"
"\\displaystyle\\sum_{n=2}^{\\infty}C_nn(n-1)x^{n+1}-\\displaystyle\\sum_{n=1}^{\\infty}C_nnx^{n}+\\displaystyle\\sum_{n=0}^{\\infty}C_nx^n+\\displaystyle\\sum_{n=0}^{\\infty}C_nx^{n+1}=0"
"\\displaystyle\\sum_{n=3}^{\\infty}C_{n-1}(n-1)(n-2)x^{n}+\\displaystyle\\sum_{n=1}^{\\infty}C_nnx^{n}+\\displaystyle\\sum_{n=0}^{\\infty}C_nx^n"
"+\\displaystyle\\sum_{n=1}^{\\infty}C_{n-1}x^{n}=0"
"\\displaystyle\\sum_{n=3}^{\\infty}C_{n-1}(n-1)(n-2)x^{n}-C_1x-2C_2x^{2}-\\displaystyle\\sum_{n=3}^{\\infty}C_nnx^{n}+C_0"
"+C_1x+C_2x^{2}+\\displaystyle\\sum_{n=3}^{\\infty}C_nx^n+C_0x+C_1x^{2}+\\displaystyle\\sum_{n=3}^{\\infty}C_{n-1}x^n=0"
"C_0+C_0x+(-2C_2+C_2+C_1)x^{2}+[\\displaystyle\\sum_{n=3}^{\\infty}(n-1)(n-2)C_{n-1}"
"-nC_n+C_nx^n+C_{n-1}]x^n=0"
Equating each coefficient by 0
"C_0=0"
"-2C_2+C_2+C_1=0"
"-C_2+C_1=0"
"C_1=C_2"
For "n>2" ,
"(n-1)(n-2)C_{n-1}-nC_n+C_n+C_{n-1}=0"
"[(n-1)(n-2)+1]C_{n-1}+(1-n)C_n=0"
"C_n=\\frac{(n-1)(n-2)+1}{(n-1)}C_{n-1}"
"C_n=[(n-2)+\\frac{1}{(n-1)}]C_{n-1}"
"C_3=(1+\\frac{1}{2})C_2"
"C_3=\\frac{3}{2}C_2"
"C_4=(2+\\frac{1}{3})C_3"
"C_4=\\frac{7}{3}C_3"
"C_5=(3+\\frac{1}{4})C_4"
"C_5=\\frac{13}{4}C_4"
"C_6=(4+\\frac{1}{5})C_5"
"C_6=\\frac{21}{5}C_5"
Therefore, the series solution of the differential equation is
"y=\\frac{3}{2}C_2x^3+\\frac{7}{3}C_3x^4+\\frac{13}{4}C_4x^5+\\frac{21}{5}C_5x^6+..."
Comments
Leave a comment