"xy^{\\mathrm{2}}\\ dx\\ +\\ \\ zx^{\\mathrm{2}}\\ dy\\ \\ \\ -\\ \\ x^{\\mathrm{2}}y^{\\mathrm{2}}\\ dz\\ =0 \\\\ \n\\frac{y^{\\mathrm{2}}d\\left(x^{\\mathrm{2}}\\right)}{\\mathrm{2}}\\ \\ +\\ zx^{\\mathrm{2}}\\ dy-\\ x^{\\mathrm{2}}y^{\\mathrm{2}}\\ dz\\ =0 \\\\ \n \\\\ \n\\int{\\left(\\frac{y^{\\mathrm{2}}d\\left(x^{\\mathrm{2}}\\right)}{\\mathrm{2}}\\right)}{}{}+\\ \\ \\int{zx^{\\mathrm{2}}dy{}{}{}{}\\ \\ -\\ \\ \\ \\int{\\left(x^{\\mathrm{2}}y^{\\mathrm{2}}\\ dz\\ \\right)=0}} \\\\ \n \\\\ \n\\frac{\\left(x^{\\mathrm{2}}y^{\\mathrm{2}}\\right)}{\\mathrm{2}}+yzx^{\\mathrm{2}}{}-{}{}x^{\\mathrm{2}}y^{\\mathrm{2}}\\ z{}{}{}\\ \\ =\\ \\ C"
Comments
Leave a comment