(D3-2D2D')z=3x2y
Given partial differential equation is,
"(D^3-2D^2D')z=3x^2y"
Let "D' = 1" then auxiliary equation,
"D^3-2D^2 = 0"
"m^3-2m^2 = 0 \\implies m^2(m-2) = 0"
"m = 0, 0, 2"
Then
"C.F. , z = \\phi(y)+x\\phi(y)+\\phi(y+2x)"
P.I. "\\frac{1}{(D^3-2D^2D')}3x^2y = 3\\frac{1}{(D^3-2D^2D')}x^2y = 3\\frac{1}{D^3(1-\\frac{2D'}{D})}x^2y"
Expanding biomomially,
"= \\frac{3}{D^3}(1-\\frac{2D'}{D})^{-1}x^2y = \\frac{3}{D^3}(1+\\frac{2D'}{D}+....)x^2y"
"= \\frac{3}{D^3}[x^2y+\\frac{2}{D}x^2]= \\frac{3}{D^3}[x^2y+\\frac{2x^3}{3}] = \\frac{3x^2y}{D^3}+\\frac{2x^3}{D^3}"
"= \\frac{x^5y}{20}+\\frac{x^6}{60}"
Complete solution will be,
"z = \\phi(y)+x\\phi(y)+\\phi(y+2x) + \\frac{x^5y}{20}+\\frac{x^6}{60}"
Comments
Leave a comment