1. Differentiate of the following functions with respect to x:
i) ππππ₯β ln(5π₯)
ii) βπππ βπ₯
iii) π ln (π‘ππ5π₯)
iv) πππ2 {ln(π πππ₯)}
v) ln (π‘πππ₯) οΏ½
"(\\sin(x))'=\\cos(x)"
"(\\cos(x))'=-\\sin(x)"
"(\\ln(x))'=\\frac{1}{x}"
"(\\sqrt{x})'=\\frac{1}{2}\\cdot\\frac{1}{\\sqrt{x}}"
"(e^{x})'=e^{x}"
"(\\tan(x))'=\\frac{1}{\\cos^2(x)}"
"(C\\cdot x)'=C"
Let, "h(x)=f(g(x)), h'(x)=f'(x)\\cdot g'(x)" (*)
Use(*),
"(\\sec(x))'=(\\frac{1}{\\cos(x)})'=(-\\frac{1}{\\cos^{2}(x)})\\cdot(-\\sin(x))=\\frac{\\sin(x)}{\\cos^2(x)}" ,
where "f(x)=\\frac{1}{\\cos(x)}, g(x)=\\cos(x)" ).
-------------------------------------------------------------------------------------------------------------------
1) "(\\sin(x)\\cdot\\ln(5x))'."
"(f\\cdot g)'=f'g+fg'" (1)
Use (1),
"(\\sin(x)\\cdot\\ln(5x))'=(\\sin(x))'\\cdot\\ln(5x)+\\sin(x)\\cdot(\\ln(5x))'="
"=\\cos(x)\\cdot\\ln(5x)+\\sin(x)\\cdot\\frac{1}{5x}\\cdot5=\\cos(x)\\cdot\\ln(5x)+\\frac{\\sin(x)}{x}".
-------------------------------------------------------------------------------------------------------------------
2) "(\\sqrt{\\cos(\\sqrt{x})})'".
Let "p(x)=f(g(h(x)))", then "p'(x)=f'(x)\\cdot g'(x)\\cdot h'(x)".
"f(x)=\\sqrt{u}, u=\\cos(\\sqrt{x})\\implies f'(x)=\\frac{1}{2}\\cdot\\frac{1}{\\sqrt{u}}=\\frac{1}{2}\\cdot\\frac{1}{\\sqrt{\\cos(\\sqrt{x})}}",
"g(x)=\\cos(v),v=\\sqrt{x}\\implies g'(x)=-\\sin(v)=-\\sin(\\sqrt{x})",
"h(x)=\\sqrt{x}, h'(x)=\\frac{1}{2}\\cdot\\frac{1}{\\sqrt{x}}".
"(\\sqrt{\\cos(\\sqrt{x})})'=\\frac{1}{2}\\cdot\\frac{1}{\\sqrt{\\cos(\\sqrt{x})}}\\cdot(-\\sin(\\sqrt{x}))\\cdot\\frac{1}{2}\\cdot\\frac{1}{\\sqrt{x}}="
"=-\\frac{1}{4}\\cdot\\frac{\\sin(\\sqrt{x})}{\\sqrt{x}\\cdot\\sqrt{\\cos(\\sqrt{x})}}".
-------------------------------------------------------------------------------------------------------------------
3) "(e^{\\ln(\\tan(5x))})'".
Let "p(x)=s(f(g(h(x))))\\implies p'(x)=s'(x)\\cdot f'(x)\\cdot g'(x)\\cdot h'(x)".
"s(x)=e^{u}, u=\\ln(\\tan(5\\cdot x))\\implies s'(x)=e^{u}=e^{\\ln(\\tan(5\\cdot x))}",
"f(x)=\\ln(v), v=\\tan(5\\cdot x)\\implies f'(x)=\\frac{1}{v}=\\frac{1}{\\tan(5\\cdot x)}",
"g(x)=\\tan(w), w=5\\cdot x\\implies g'(x)=\\frac{1}{\\cos^{2}(w)}=\\frac{1}{\\cos^2(5\\cdot x)}",
"h(x)=5\\cdot x\\implies h'(x)=5".
"(e^{\\ln(\\tan(5x))})'=e^{\\ln(\\tan(5x))}\\cdot\\frac{1}{tan(5x)}\\cdot\\frac{1}{\\cos^{2}(5x)}\\cdot5="
"=5\\cdot\\tan(5x)\\cdot\\frac{1}{\\tan(5x)}\\cdot\\frac{1}{\\cos^{2}(5x)}=5\\sec^{2}(x)".
-------------------------------------------------------------------------------------------------------------------
4) "(\\sin(2(\\ln(\\sec(x)))))'".
"(\\sin(2(\\ln(\\sec(x)))))'=\\cos(2(\\ln(\\sec(x)))))\\cdot2\\cdot\\frac{1}{\\sec(x)}\\cdot\\frac{\\sin(x)}{\\cos^2(x)}="
"=2\\cdot\\cos(2(\\ln(\\sec(x)))))\\cdot\\tan(x)".
-------------------------------------------------------------------------------------------------------------------
5) "(\\ln(\\tan(x)))'=\\frac{1}{\\tan(x)}\\cdot\\frac{1}{\\cos^2(x)}=\\frac{1}{\\sin(x)}=\\csc(x)".
Comments
Leave a comment