Solve the following initial value problem
Ut(x,t)=10Uxx(x,t) -10
U(-1,t)=U(1,t) Ux(-1,t)=Ux(1,t) t>0
Ux(x,0)=x+1 -1
Solution of heat equation:
"u_n(x,t)=B_nsin(\\pi nx\/L)e^{kt(\\pi n\/L)^2}"
"k=10"
"B_n=\\frac{2}{L}\\int^L_0f(x)sin(\\frac{\\pi nx}{L})dx" , n=1,2,3,...
"f(x)=u(x,0)=10"
Then:
"-10u(-1,t)=u(1,t)" :
"10\\sum B_nsin(\\pi n\/L)e^{10t(\\pi n\/L)^2}=\\sum B_nsin(\\pi n\/L)e^{10t(\\pi n\/L)^2}"
"\\implies sin(\\pi n\/L)=0 \\implies L=1"
"u_x=\\sum B_n \\frac{\\pi n}{L} cos(\\pi nx\/L)e^{10t(\\pi n\/L)^2}=\\sum B_n \\pi n cos(\\pi nx)e^{10t(\\pi n)^2}"
"u_x(x,0)=\\sum B_n \\pi n cos(\\pi nx)=x+1"
"B_n=20\\int^1_0sin(\\pi nx)dx=-\\frac{20}{\\pi n}cos(\\pi nx)|^1_0=20\/(\\pi n)-20cos(\\pi n)\/(\\pi n)"
"B_n=0" for even n
"B_n=40\/(\\pi n)" for odd n
"u_x(x,0)=40\\sum cos(\\pi nx)=x+1" , n=1,3,5,...
"u(x,t)=\\sum\\frac{40}{\\pi n}sin(\\pi nx)e^{10t(\\pi n)^2}" , n=1,3,5,...
Comments
Leave a comment