Find the characteristics values and the characteristics functions of the sturn_liouville problem
d/dx[x(dy/dx]+(λ /x)y=0,
y1(1)=0, y1(e(2π))=0 where λ>0
if "\\lambda>0" :
"\\lambda=k^2" with "k>0"
"x^2y''+xy'+k^2y=0"
an Euler equation with indicial equation:
"r^2+k^2=(r-ik)(r+ik)=0"
"y=c_1cos(klnx)+c_2sin(klnx)"
"y'=-c_1sin(klnx)\/x+c_2cos(klnx)\/x"
"y'(1)=c_2=0"
"y'(e^{2\\pi})=-c_1sin(2k\\pi)\/e^{2\\pi}=0"
"2k\\pi=\\pi n"
"k= n\/2"
"\\lambda_n=(\\ n\/2)^2"
"y_n=cos( nlnx\/2)"
Comments
Leave a comment