Solution;
Take the Laplace transform of both the left hand side as;
L [ ∂ u ∂ t ] = s U ( x , s ) − u ( x , 0 ) L[\frac{\partial u}{\partial t}]=sU(x,s)-u(x,0) L [ ∂ t ∂ u ] = s U ( x , s ) − u ( x , 0 )
And of the right hand side as;
L [ ∂ 2 u ∂ x 2 ] = ∂ 2 U ∂ x 2 ( x , s ) L[\frac{\partial^2u}{\partial x^2}]=\frac{\partial^2U}{{\partial x^2}}(x,s) L [ ∂ x 2 ∂ 2 u ] = ∂ x 2 ∂ 2 U ( x , s )
We have;
∂ 2 U ∂ x 2 ( x , s ) = s U ( x , s ) − u ( x , 0 ) \frac{\partial ^2U}{\partial x^2}(x,s)=sU(x,s)-u(x,0) ∂ x 2 ∂ 2 U ( x , s ) = s U ( x , s ) − u ( x , 0 )
From the problem;
u ( x , o ) = s i n ( π x ) u(x,o)=sin(πx) u ( x , o ) = s in ( π x )
Substitute;
∂ 2 U ∂ x 2 ( x , s ) − s U ( x , s ) = − s i n ( π x ) \frac{\partial^2U}{\partial x^2}(x,s)-sU(x,s)=-sin(πx) ∂ x 2 ∂ 2 U ( x , s ) − s U ( x , s ) = − s in ( π x )
This is a ODE whose general solution can be written as;
U ( x , s ) = U h ( x , s ) + U p ( x , s ) U(x,s)=U_h(x,s)+U_p(x,s) U ( x , s ) = U h ( x , s ) + U p ( x , s )
where U h ( x , s ) U_h(x,s) U h ( x , s ) is the general solution of the homogeneous problem obtained as;
m 2 − s = 0 m^2-s=0 m 2 − s = 0
m = − + s m=\displaystyle_-^+\sqrt s m = − + s
Hence;
U h ( x , s ) = c 1 e s x + c 2 e − s x U_h(x,s)=c_1e^{\sqrt s x}+c_2e^{-\sqrt s x} U h ( x , s ) = c 1 e s x + c 2 e − s x
and U p ( x , s ) U_p(x,s) U p ( x , s ) is any particular solution of the non-homogeneous problem,which is;
U p ( x , s ) = A c o s ( π x ) + B s i n ( π x ) U_p(x,s)=Acos(πx)+Bsin(πx) U p ( x , s ) = A cos ( π x ) + B s in ( π x )
We first use the method of undetermined coefficients to find A and B. To this end we have;
d d x U p ( x , s ) = − π A s i n ( π x ) + π B c o s ( π x ) \frac{d}{dx}U_p(x,s)=-πAsin(πx)+πBcos(πx) d x d U p ( x , s ) = − π A s in ( π x ) + π B cos ( π x )
The second derivative;
d 2 d x 2 U p ( x , s ) = − π 2 A c o s ( π x ) − π 2 B c o s ( π x ) \frac{d^2}{dx^2}U_p(x,s)=-π^2Acos(πx)-π^2Bcos(πx) d x 2 d 2 U p ( x , s ) = − π 2 A cos ( π x ) − π 2 B cos ( π x )
Therefore;
d 2 d x 2 U p ( x , s ) − U p ( x , s ) = − s i n ( π x ) \frac{d^2}{dx^2}U_p(x,s)-U_p(x,s)=-sin(πx) d x 2 d 2 U p ( x , s ) − U p ( x , s ) = − s in ( π x )
By substitution;
( − π 2 − s ) ( A c o s ( π x ) + B s i n ( π x ) ) = − s i n ( π x ) (-π^2-s)(Acos(πx)+Bsin(πx))=-sin(πx) ( − π 2 − s ) ( A cos ( π x ) + B s in ( π x )) = − s in ( π x )
From which we conclude that;
− ( π 2 + s ) A = 0 -(π^2+s)A=0 − ( π 2 + s ) A = 0 ; A=0
Also;
− ( π 2 + s ) B = − 1 -(π^2+s)B=-1 − ( π 2 + s ) B = − 1 ;B = 1 s + π 2 B=\frac{1}{s+π^2} B = s + π 2 1
Now we have the general solution as;
U ( x , s ) = c 1 e s x + c 2 e − s x + 1 s + π 2 s i n ( π x ) U(x,s)=c_1e^{\sqrt sx}+c_2e^{-\sqrt sx}+\frac{1}{s+π^2}sin(πx) U ( x , s ) = c 1 e s x + c 2 e − s x + s + π 2 1 s in ( π x )
We note the the Laplace transforms of the boundary conditions give;
u ( 0 , t ) = 0 ⟹ U ( 0 , s ) = 0 u(0,t)=0 \implies U(0,s)=0 u ( 0 , t ) = 0 ⟹ U ( 0 , s ) = 0
u ( 1 , t ) = 0 ⟹ U ( 1 , s ) = 0 u(1,t)=0\implies U(1,s)=0 u ( 1 , t ) = 0 ⟹ U ( 1 , s ) = 0
So we have;
U ( 0 , s ) = 0 = c 1 + c 2 U(0,s)=0=c_1+c_2 U ( 0 , s ) = 0 = c 1 + c 2
U ( 1 , s ) = 0 = c 1 e s + c 2 e − s U(1,s)=0=c_1e^{\sqrt s}+c_2e^{-\sqrt s} U ( 1 , s ) = 0 = c 1 e s + c 2 e − s
Which gives c 1 = c 2 = 0 c_1=c_2=0 c 1 = c 2 = 0 and we have;
U ( x , s ) = 1 s + π 2 s i n ( π x ) U(x,s)=\frac{1}{s+π^2}sin(πx) U ( x , s ) = s + π 2 1 s in ( π x )
To find our solution we apply the inverse Laplace transform;
u ( x , t ) = s i n ( π x ) L − 1 [ 1 s + π 2 ] u(x,t)=sin(πx)L^{-1}[\frac{1}{s+π^2}] u ( x , t ) = s in ( π x ) L − 1 [ s + π 2 1 ]
u ( x , t ) = e − π 2 t s i n ( π x ) u(x,t)=e^{-π^2t}sin(πx) u ( x , t ) = e − π 2 t s in ( π x )
Comments