Question #252342

Use the laplace transform to solve the one dimensional boundary value problem

∂u/∂t=∂2u/∂x2, 0<x<1, t>0

subject to u(x,0)=sin πx, u(0,t)=0, u(1,t)=0


1
Expert's answer
2021-11-08T16:12:39-0500

Solution;

Take the Laplace transform of both the left hand side as;

L[ut]=sU(x,s)u(x,0)L[\frac{\partial u}{\partial t}]=sU(x,s)-u(x,0)

And of the right hand side as;

L[2ux2]=2Ux2(x,s)L[\frac{\partial^2u}{\partial x^2}]=\frac{\partial^2U}{{\partial x^2}}(x,s)

We have;

2Ux2(x,s)=sU(x,s)u(x,0)\frac{\partial ^2U}{\partial x^2}(x,s)=sU(x,s)-u(x,0)

From the problem;

u(x,o)=sin(πx)u(x,o)=sin(πx)

Substitute;

2Ux2(x,s)sU(x,s)=sin(πx)\frac{\partial^2U}{\partial x^2}(x,s)-sU(x,s)=-sin(πx)

This is a ODE whose general solution can be written as;

U(x,s)=Uh(x,s)+Up(x,s)U(x,s)=U_h(x,s)+U_p(x,s)

where Uh(x,s)U_h(x,s) is the general solution of the homogeneous problem obtained as;

m2s=0m^2-s=0

m=+sm=\displaystyle_-^+\sqrt s

Hence;

Uh(x,s)=c1esx+c2esxU_h(x,s)=c_1e^{\sqrt s x}+c_2e^{-\sqrt s x}

and Up(x,s)U_p(x,s) is any particular solution of the non-homogeneous problem,which is;

Up(x,s)=Acos(πx)+Bsin(πx)U_p(x,s)=Acos(πx)+Bsin(πx)

We first use the method of undetermined coefficients to find A and B. To this end we have;

ddxUp(x,s)=πAsin(πx)+πBcos(πx)\frac{d}{dx}U_p(x,s)=-πAsin(πx)+πBcos(πx)

The second derivative;

d2dx2Up(x,s)=π2Acos(πx)π2Bcos(πx)\frac{d^2}{dx^2}U_p(x,s)=-π^2Acos(πx)-π^2Bcos(πx)

Therefore;

d2dx2Up(x,s)Up(x,s)=sin(πx)\frac{d^2}{dx^2}U_p(x,s)-U_p(x,s)=-sin(πx)

By substitution;

(π2s)(Acos(πx)+Bsin(πx))=sin(πx)(-π^2-s)(Acos(πx)+Bsin(πx))=-sin(πx)

From which we conclude that;

(π2+s)A=0-(π^2+s)A=0 ; A=0

Also;

(π2+s)B=1-(π^2+s)B=-1 ;B=1s+π2B=\frac{1}{s+π^2}

Now we have the general solution as;

U(x,s)=c1esx+c2esx+1s+π2sin(πx)U(x,s)=c_1e^{\sqrt sx}+c_2e^{-\sqrt sx}+\frac{1}{s+π^2}sin(πx)

We note the the Laplace transforms of the boundary conditions give;

u(0,t)=0    U(0,s)=0u(0,t)=0 \implies U(0,s)=0

u(1,t)=0    U(1,s)=0u(1,t)=0\implies U(1,s)=0

So we have;

U(0,s)=0=c1+c2U(0,s)=0=c_1+c_2

U(1,s)=0=c1es+c2esU(1,s)=0=c_1e^{\sqrt s}+c_2e^{-\sqrt s}

Which gives c1=c2=0c_1=c_2=0 and we have;

U(x,s)=1s+π2sin(πx)U(x,s)=\frac{1}{s+π^2}sin(πx)

To find our solution we apply the inverse Laplace transform;

u(x,t)=sin(πx)L1[1s+π2]u(x,t)=sin(πx)L^{-1}[\frac{1}{s+π^2}]

u(x,t)=eπ2tsin(πx)u(x,t)=e^{-π^2t}sin(πx)









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS