Determine the laplace transform for ∂u/∂t and ∂u/∂x. Hence using the laplace transform method, solve the partial differential equation ∂u/∂t=u-∂u/∂x. subject to the initial condition u(x,0)=e-7x,x>0,t>0
Laplace transform:
"L(u(x,t))=\\int^{\\infin}_0 e^{-st}u(x,t)dt=U(x,s)"
"L(u_t(x,t))=\\int^{\\infin}_0 e^{-st}u_t(x,t)dt=e^{-st}u(x,t)|^{\\infin}_0+s\\int^{\\infin}_0 e^{-st}u(x,t)dt="
"=sU(x,s)-U(x,0)"
"L(u_x(x,t))=\\int^{\\infin}_0 e^{-st}u_x(x,t)dt=U_x(x,s)"
Then:
"sU(x,s)-U(x,0)=U(x,s)-U_x(x,s)"
"\\frac{dU}{dx}(x,s)+(s-1)U(x,s)=e^{-7x}"
integrating factor:
"\\mu=e^{\\int(s-1)dx}=e^{(s-1)x}"
Thus we have:
"\\frac{d}{dx}[e^{(s-1)x}U(x,s)]=e^{(s-1)x}e^{-7x}"
"U(x,s)=e^{-(s-1)x}\\int^x_0 e^{(s-1)r}e^{-7r}dr+ce^{-(s-1)x}="
"=e^{-(s-1)x}\\cdot\\frac{e^{(s-8)r}}{s-8}|^x_0+ce^{-(s-1)x}=\\frac{e^{-7x}-e^{-(s-1)x}}{s-8}+ce^{-(s-1)x}"
Taking the inverse Laplace transform we have:
"u(x,t)=e^{-7x}e^{8t}-e^{x+8(t-x)}H(t-x)+ce^t\\delta(t-x)"
where H is Heaviside function:
"H(x)=\\begin{cases}\n 0 &x<0 \\\\\n 1 &x\\ge0\n\\end{cases}"
Comments
Leave a comment