auxillary equation:
"m^2+2m+1=0"
"m_{1,2}=-1"
"C.F.=f_1(y+mx)+xf_2(y+mx)=f_1(y-x)+xf_2(y-x)"
for particular integral:
for "e^{x-y}" :
"\\frac{1}{F(D,D')}e^{ax+by}=\\frac{1}{F(a,b)}e^{ax+by}"
"\\frac{1}{D^2+2DD'+D'}e^{x-y}=\\frac{1}{1-2-1}e^{x-y}=-e^{x-y}\/2"
for "xy" :
"\\frac{1}{F(D,D')}xy=\\frac{1}{D^2}(1+\\frac{2D'}{D}+\\frac{D'}{D^2})^{-1}xy=\\frac{1}{D^2}(1-\\frac{2D'}{D}+...)xy="
"=\\frac{1}{D^2}(xy-2x\/D)=x^3\/6-x^4\/12"
"z=f_1(y-x)+xf_2(y-x)-e^{x-y}\/2+x^3\/6-x^4\/12"
Comments
Leave a comment