"(2x+3)\\frac{dy}{dx}-y=0\\\\\n\\Rightarrow \\frac{dy}{dx}=\\frac{y}{2x+3}\\\\\n\\Rightarrow \\frac{dy}{y}=\\frac{dx}{2x+3}"
Integrating both sides, we get:
"ln(y)=\\frac{ln(2x+3)}{2}+ln(c)\\\\\n\\Rightarrow 2ln(y)=ln(2x+3)+2ln(c)\\\\\n\\Rightarrow ln(y^2)=ln(2x+3)+ln(c^2)\\\\\n\\Rightarrow ln(y^2)=ln(c^2(2x+3))\\\\\n\\therefore y^2=c^2(2x+3)\\\\\n\\Rightarrow y^2=C(2x+3)"
Comments
Leave a comment